Comprendre les besoins IO de SKA : un retour d'expérience

Atelier Technique du Laboratoire Eclat

jtacquaviva@ddn.com November 28, 2024

The Square Kilometre Array, world's largest radio telescope

10 light year away

The SKA will be so sensitive that it will be able to detect an airport radar on a planet at this distance

2'000'000 years

The data collected by the SKA in a single day would take nearly two million years to playback on an ipod

On two sites

1'000'000+ of 500GB laptops can be filled with SKA data every year

South Africa SKA1-MID

more sensitive than any other radio telescope

≈130'000

antennas spread between 500 stations

Western Australia SKA1-LOW

more sensitive than any other radio telescope

420'000 m² of total collecting area (=58 football pitch)

Odd∩ Dealing with uncertainties

- Extreme scale project
 - Path finders have been deployed, but no reference sites matching size and complexity
- Long term project in a fast-evolving technological environment
- CPU / GPU / SSD / HDD / IB / ETH
- Science still dealing with unknown
- Intrinsic to the nature of the scientific problems addressed
- Code stack not yet fully sedimented
 - Multiple code variants

Odd∩ Dealing with uncertainties: example RICK THE AI DATA COMPANY

- RICK (Radio Imaging Code Kernels) is a code that addresses the gridding, FFT and w-correction, combining parallel and accelerated solutions.
- It is being designed not to substitute radioastronomy codes but to provide specific solutions, portable and fast
- C, C++, CUDA, HIP (for AMD GPUs)
- MPI & OpenMP parallel, fully working in parallel
- All the aforementioned steps can run on GPUs (both CUDA and OpenMP for GPU offloading), in particular the FFT using the distributed CUDA library cuFFTMp
- An optimized version of the reduce has been developed on both CPU (combining MPI+OpenMP) and GPU (using NCCL or RCCL, for Nvidia and AMD respectively)
- Weighting and uv-tapering are being implemented

Courtesy of CLAUDIO GHELLER

INAF – INSTITUTE OF RADIOASTRONOMY BOLOGNA

Emanuele De Rubeis (UniBO-IRA), Giuliano Taffoni (OATS), Giovanni Lacopo (OATS), Luca Tornatore (OATS), David Goz (OATS)

Oddo Dealing with uncertainties: Co-Design THE AI DATA COMPANY

- SKA-O set-up the co-design Raccoon Team
 - Design future proof architecture
 - Focus on the storage component
 - From an IT stands point SKA is a huge data acquisition and processing device
 - EPFL and DDN
- Optimized Project Management
 - Risk mitigation
 - Considering size of the project, even a modest improvement leads to strong ROI
- Bring together science and technology expertise
- IT specialists are seldomly radio-astronomers :-(
- Radio-astronomers are skilled in IT, but we have our secret sauce :-

Why DDN? We deliver at Scale

THE AI DATA COMPANY

Odd Why DDN? An Open-Source Driven Company

THE AI DATA COMPANY

Lustre Open-Source Parallel FRile system (OpenSFS)

- Designed for HPC: data extension of the compute platform
- DDN is the lead contributor to Lustre
 - User meetings in Europe organized by EOFS
 - User meetings in Asia organized by DDN
- Open-source shields form vendor locking
 - Strong asset for long-terms projects

Odd Why DDN? Open to the Ecosystem

A – EuroHPC Infrastructures powered by DDN

LEONARDO

Leonardo

Meluxina Discoverer

erer Vega

IÜLICH

Cea

Bul

BSC

ICHEC

B – Collaborative Research Programs and DDN

- EuroHPC design of next-Gen IO system
- Al-automated features extractions from Satellite Images FCN
- Nuclear Fusion code optimization
- Excalibur (UK)
- Sandia National lab.
- RIKEN: AI for Science
- C DDN R&D Spending in Europe
- Significant portion of our WW turnover is spent on R&D
- 25 persons R&D in EU
- Lab set-up in CINECA

Odd Cross-Fertilization: Performance Analysis THE AI DATA COMPANY

Workshop on IO tracing e.g. Darshan

Variance in Shared Files (POSIX and STDIO)									
File	Processes	Fastest		Slowest			σ		
Suffix		Rank	Time	Bytes	Rank	Time	Bytes	Time	Bytes
misterio.out	32	11	6.331536	2.4GiB	26	7.412161	2.4GiB	0.264	0
<stdout></stdout>	32	16	0.000005	49B	8	0.000021	49B	0	9.76

Heat Map: DXT_MPIIO 2 107 22 ž 2 6 - 10⁶ 0 0 9 25 > Time bins: 200 0 N Time (s)

Courtesy L. Bellentani from INECA

Heat map of I/O (in bytes) over time broken down by MPI rank. Bins are populated based on the number of bytes read/written in the given time interval. The top edge bar graph sums each time slice across ranks to show aggregate I/O volume over time, while the right edge bar graph sums each rank across time slices to show I/O distribution across ranks.

Odd∩ Cross-Fertilization: Compression

- Conduct testing to validate the client-side compression features from EXAScaler / Lustre
- Real data-set provided by Shan Mignot / SKA-O
- Initially encouraging results were not validated
- Entropy prevents significant compression ratio
- Engage discussion with DotPhoton
- No low hanging fruits

Ddo Extreme Scientific Challenges: key numbers

THE AI DATA COMPANY

- 40 PB / day of raw observational data
- 700 PB / year of scientific data product
- Read Write ratio: 10:1
- Focus on power requirements
- 24/24 7/7 with mixed workload
- Radio-Telescope life expectancy 50 years

THE AI DATA COMPANY

Odd∩ CPFs: a possible Architecture

- Central Processing Facilities in Australia and South African follows the same design patterns
- Scientific results produces by CPF are stored as cold data and shared to outer world
- Outer world can also browse tape archive
- A scalable metadata catalog is needed to interface CPFs and outer world

Odd CPFs Hardware discussion: Network link THE AI DATA COMPANY

10 TB / sec can be achieved with

- 500 HDR200 links
- 250 NDR links
- 125 GDR link

Do we need extreme network density to achieve the data throughput ? Data ingestion rate is also defined by the storage devices capabilities

*Link speeds specified in Gb/s at 4X (4 lanes)

© InfiniBand Trade Association

Odd∩ CPFs Hardware discussion: PCI lane

PCI Generation	Throughput per PCI lane	Initial release of the specification	Market Availability	
Gen. 4	1 GB/s	2017	2019	
Gen. 5	4 GB/s	2019	2023	
Gen. 6	8 GB/s	2022	2024	
Gen. 7	16 GB/s	2025	2027	

An NVMe used 2 PCIe lane Production Gen5 device ~ 10 GB/s 10 TB / sec can be achieved with

- 1000 PCI Gen5 devices
- ~ 40/50 appliances with current form factor

- PCI technology tends to follow a 2.5-year development cycle
- Since PCI Gen 4 read and write are significantly imbalanced
 - Latest Gen 5 devices ~14 GB/s Read and ~8 GB/s Write
 - Imbalance due to flash (not pci) further increased by the data protection mechanism

Critical importance of crafting a carefully balanced architecture with alignment of Network / CPU / PCI / Device Bandwidths

Odd CPFs Hardware discussion: power envelop THE AI DATA COMPANY

DDN AI400X3

Odd∩ CPFS: Hardware discussion

Fastest and Safest QLC, TLC SSD and HDD

Intelligent Clients Fastest Network

Fastest Servers

Fastest I/O

Resilient, High-Density Enclosures

Fully Redundant back-end

Massive Expansion NVMeoF or SAS

Od∩ Exploitation discussion: Data set management

THE AI DATA COMPANY

CFP will generate a large volume of SFP to be processed by the community Metadata catalog required

- Metadata allows to structure Datalake
- Prevents Data-lake to turn in Data Swamp
- Query-able Metadata Catalog
- Difference between semantic and logistical metadata
- Difference between query-able and structured

Odd Exploitation: Metadata catalog

- Query-able Metadata: RUCIO
- DDN works with CERN on RUCIO + Lustre
 - Work conducted in a DaFab EU project
 - 3M€/8 partners
- Extension of the Query capabilities of RUCIO
- Support of GeoJSON metadata
- Metadata / data ratio evolves with metadata complexity
 - Metadata exceed data by a factor of 3 on some AI workoads

DaFAB Project: 101128693 — DaFab — HORIZON-EUSPA-2022-SPACE

THE AI DATA COMPANY

Oddo Exploitation: Metadata structuration and registration

Scientific Data Operation Scale, Efficiency & Performance

Scientific Dataset Management Multi-Tenancy, metadata-based governance, registration mechanism

Od∩ On-going: Imaging IO Test

Benchmark Suite: Level1 imaging-iotest: multi-node analysis Peter Wortmann from SKA-O

Od∩ On-going: Performance Assessment

Deploy Existing scientific pipelines on existing architectures

File systems are heavily instrumented: ability to extract detailed application behavior

Cooperate with the Scientific Community Pipelines remains highly-technical workflows

Odf-pipeline Public		⊙ Watch 17
28 Branches 🛇 15 Tags	Q Go to file t Add file	e ▼ (> Code ▼
omhardcastle Bugfix	660fce2 · 4 days ag	1,401 Commits
ocs	Add convolution and build into mosaicing	5 months ago
examples	Update DR3 strategy	last month
isc misc	Update singularity	last year
scripts	Bugfix	4 days ago
🖿 utils	tweaked envelope fitting and plotting	2 weeks ago

Odd∩ Next Step: Production and Orchestration

- 1. CFP workload will evolve over the year
- 2. Usage with evolve over the year

Future Proof Architecture

- Implementation of QoS and SLA capabilities
- Prevent over-specialization of the components

 Specification vs risk mitigation
- Sandboxing / experimental playground
 - o Argo / K8
 - Multi-tenancy

	Les devises Shadok
	R
/	and the second s
	00

POUR ALLER QUELQUE PART, EN GÉNÉRAL, LE PLUS SIMPLE EST DE PARTIR DE LÀ OÙ ON VEUT ALLER

FOUREL

ddn