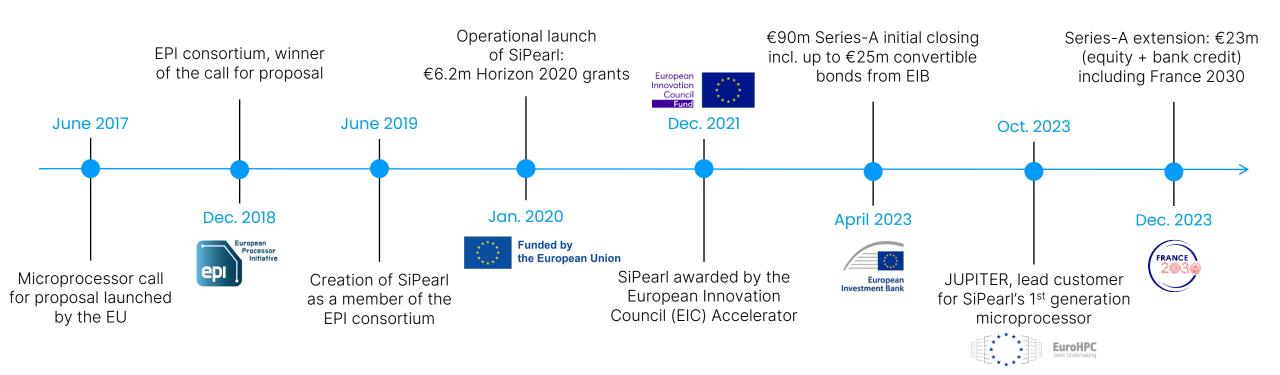


Rhea the perfect chip for Co-design


ECLAT / Bordeaux

November 2024

SiPearl's history and mission

From a European Union concern to SiPearl's ramp-up Our common goal: fostering the return of high-performance, low-power microprocessor technologies in Europe.

European Union Initiative

September 2018

Launch of the EuroHPC JU backed by a €8bn budget to deploy in Europe a world class exascale⁽¹⁾ supercomputing infrastructure.

December 2018

Launch of a call for proposals in 2017 for developing a new generation of high-end European microprocessors

- Budget: €150m
- Target: high-performance and energy-efficiency

Coordinated by Bull (Atos Group), the European Processor Initiative (EPI) consortium won this call for proposals. It has currently 30 members:

- · Scientists: research institutes, universities and supercomputing centres
- Industry: European leaders, IT, electronics and automotive specialists

June 2019

SiPearl is the private company created within the EPI to launch a strategic industry for Europe.

Our EPI partners, a powerful ecosystem

Close collaboration with our partners of the EPI consortium

Scientists: research institutes, universities and supercomputing centres. Industry: European leaders, IT, electronics and automotive specialists.

A joint project involving 200 engineers since December 2018

• Development of elementary hardware and software technological bricks.

Stakeholders

Privileged access to IP of European leaders and innovative startups.

End-users

• Supercomputing centres.

SiPearl in a nutshell

Building the European high-performance low-power microprocessor

Incorporated In June 2019

Financing

Series-A to date: €113m (€105m equity + €8m bank loans)

Arm architecture

Energy-efficiency quick time to market, proven ecosystem

Identified customers

Server manufacturers based on user specifications: First, EuroHPC ecosystem before going global.

7 locations

Maisons-Laffitte (HQ), Barcelona, Bologna, Duisburg, Grenoble, Massy, Sophia Antipolis

Rheal in 5 key benefits

The European high-performance low-power microprocessor dedicated to HPC and artificial intelligence.

Backdoor-free security

To protect data with secure end-to-end network transmission.

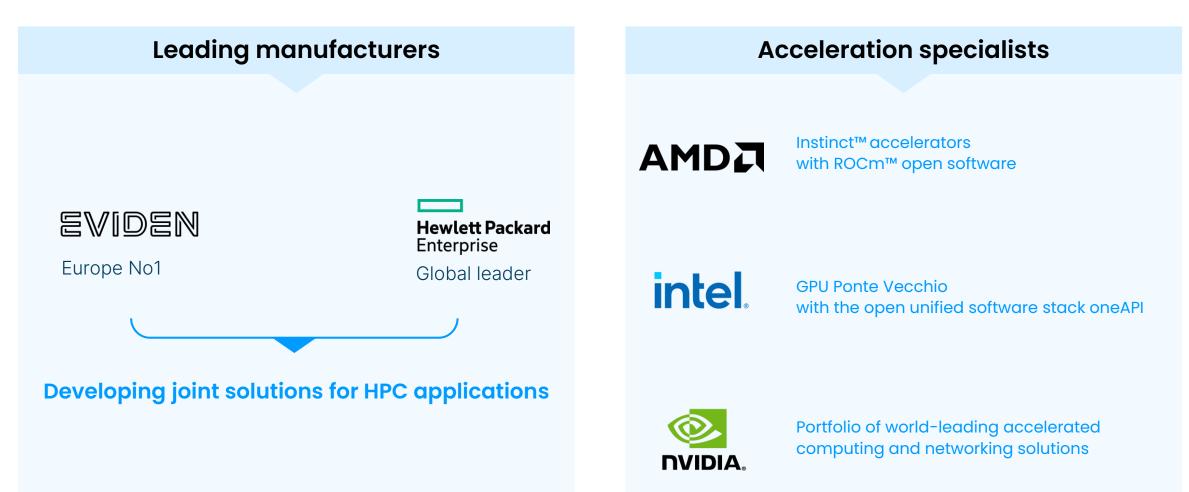
Sovereignty

To further Europe's technological leadership and independence.

Technology partnerships

with leading providers

Synopsys*EDA softwareMarchanValidation of semiconductor power integrity, minimization of power consumptionMarchanHardware emulation with Veloce Strato emulation platform 128 new generation cards • x1,000 simulation speed • Unique in EuropeSAMSUNGAdvanced High-Bandwidth Memory solution for Rhea • Speed • Energy • Thermal resistance	arm	Our main partner SiPearl, the only European licensee to use arm Neoverse V1 plateform
NISYS Hardware emulation with Veloce Strato emulation platform NEMENS 128 new generation cards NOTAL INDUSTRIES SOFTWARE 128 new generation cards NING x 1,000 simulation speed Unique in Europe Advanced High-Bandwidth Memory solution for Rhea SAMSUNG Speed Energy Energy	Synopsys °	EDA software
SIEMENS • 128 new generation cards • x 1,000 simulation speed • Unique in Europe Advanced High-Bandwidth Memory solution for Rhea • Speed • Energy	Ansys	Validation of semiconductor power integrity, minimization of power consumption
SAMSUNG Speed Energy		 128 new generation cards x 1,000 simulation speed
	SAMSUNG	 Speed Energy



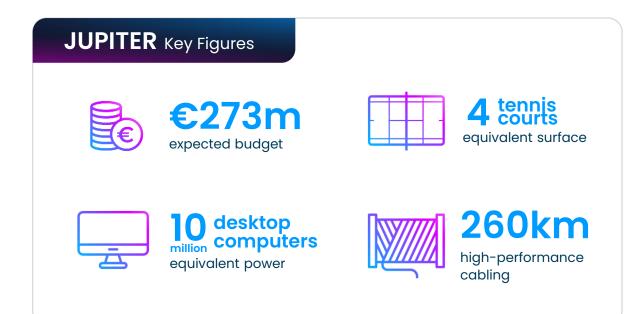
Manufacturing initially entrusted to TSMC

Etching: 6nm or better for next generations

World leading industrial partnerships

Our ecosystem to accelerate Europe's adoption of exascale supercomputers

JUPITER, lead customer


JUPITER, 1st European exascale supercomputer owned by EuroHPC, operated by Jülich (Germany)

Built by a European consortium

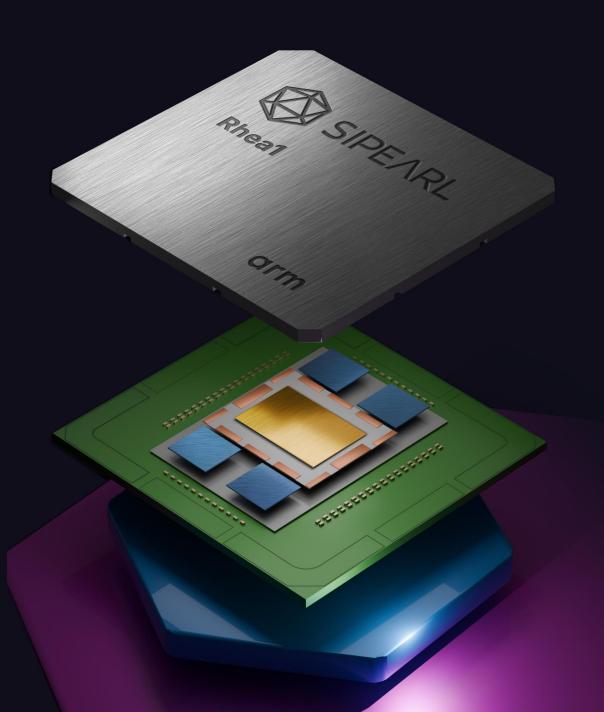
- Eviden: the Atos Group business leading in advanced computing
- ParTec: the German modular supercomputing company

General-purpose Cluster Module of JUPITER to be based on Rhea1

- Very high memory bandwidth
- Extraordinary compute performance and efficiency

Our business: the high-performance energy-efficient microprocessor dedicated to HPC⁽¹⁾ and AI

Tens of thousands of microprocessors in a supercomputer


RHEAI

HPC and AI microprocessor

80 arm[®] Neoverse V1 cores with 2 x 256 SVE each

4 x HBM

4 x DDR5 interfaces

Rheal, our 1st generation microprocessor

Rhean SIDENA

Designed with high-performance energy-efficient Arm Neoverse V1 platform

High performance per watt: Arm ISA power efficiency

Very high memory bandwidth

Built-in HBM

Ideal performances for Generative AI

Unique memory architecture: High Byte/Flop

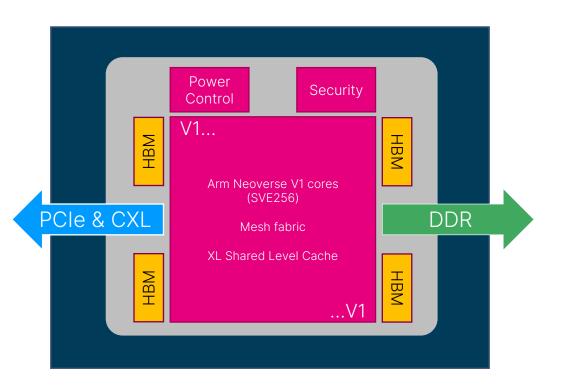
Openess

Arm ecosystem from IoT/edge to HPC and cloud

Fully auditable - backdoor-free

Pre-integration with proven accelerator (AMD, Graphcore, Intel, Nvidia)

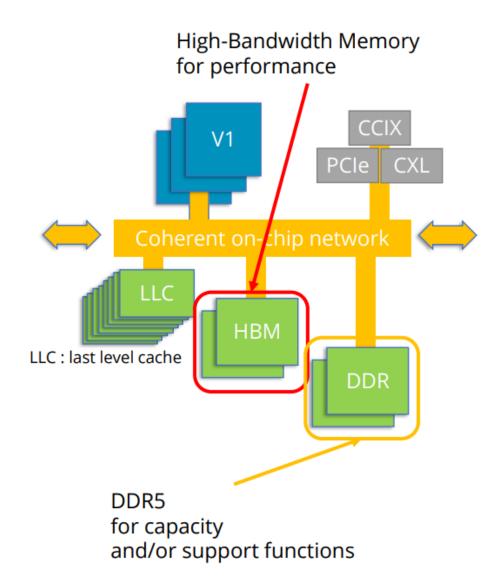
Rheal will deliver extraordinary performance and efficiency with an unmatched Byte/Flop ratio.


At the heart of Rhea

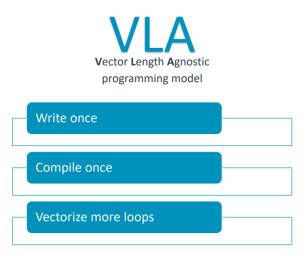
With its high-performance, low-power Arm Neoverse V1 architecture, Rhea will meet the needs of all supercomputing workloads.

Key features

Core	 Arm architecture Neoverse V1 cores SVE 256 per core supporting 64/32/BF16 and Int8 ArmVirtualization extensions
SoC	 Arm mesh fabric Advanced RAS support including Arm RAS extensions Link protection for NoC & high-speed IO ECC support for selected memory
Cache	Large L3 (Shared Level Cache)RAS supported for all cache levels
Memory	 HBM2e And DDR5 ECC for memory and link protection for controllers
High Speed I/O	 PCIe, CCIX & CXL Root and endpoint support
Other I/O	- USB, GPIO, SPI, I ² C
Power Management	 Power management block to optimize perf/watt accross use cases and workloads.
Security Block Support	 Secure boot and secure upgrade Crypto True random number generation Made in Europe



Rhea will deliver extraordinary real compute performance and efficiency with an unmatched Bytes/Flops ratio.


SIPEARL 16

Influencial parameters on Rhea

- 💭 SIPEARL 17

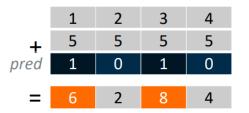
Vector Length Agnostic programming model

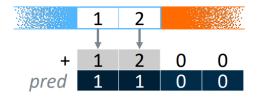
Pros	Considerations
Not thinking about vector length	Should not be writing fixed width
No peel/remainder loops	Generate predicated instructions
Key is loop structures	Cost of generating predicates Near empty loops

SVE main features

Per lane predication

Operations work on individual lanes under control of a predicate register


Vector partitioning & software-managed speculation


First Faulting Load instructions allow memory accesses to cross into invalid pages

Predicate-driven loop control and management

Eliminate scalar loop heads and tails by processing partial vectors

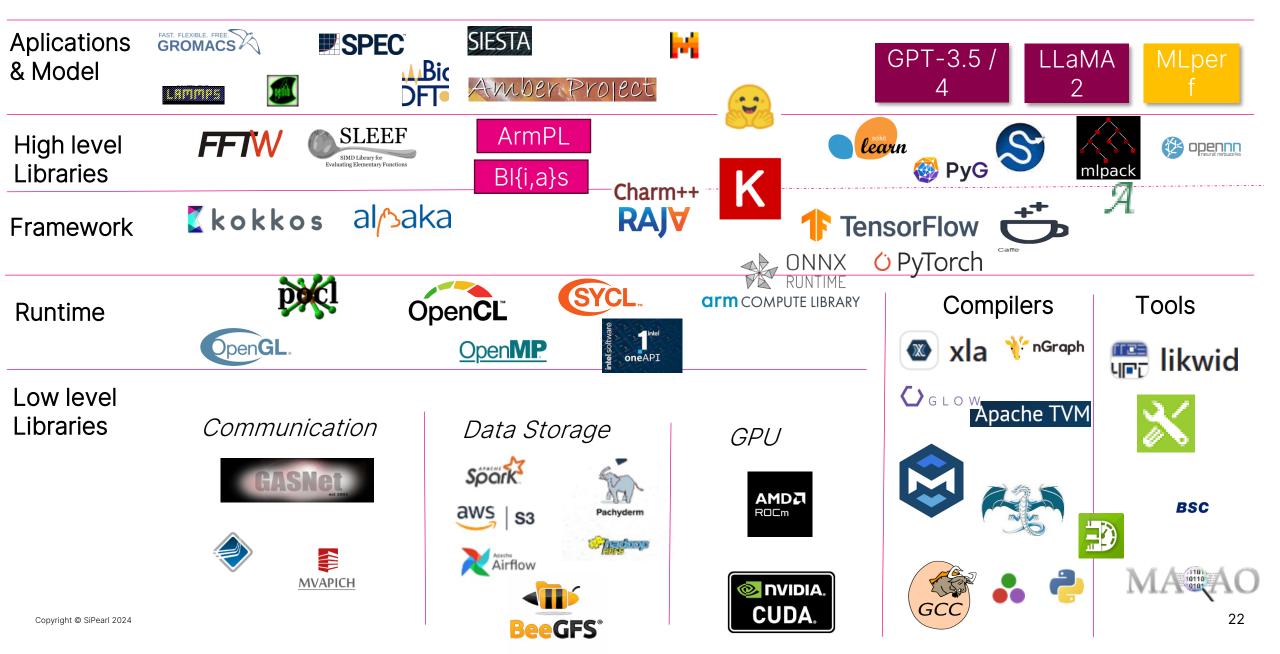
for (i	= 0;	i <	n;	++i)
INDEX i	n-2	n-1	n	n+1
CMPLT n	1	1	0	0

Porting Code for Arm-neoverse

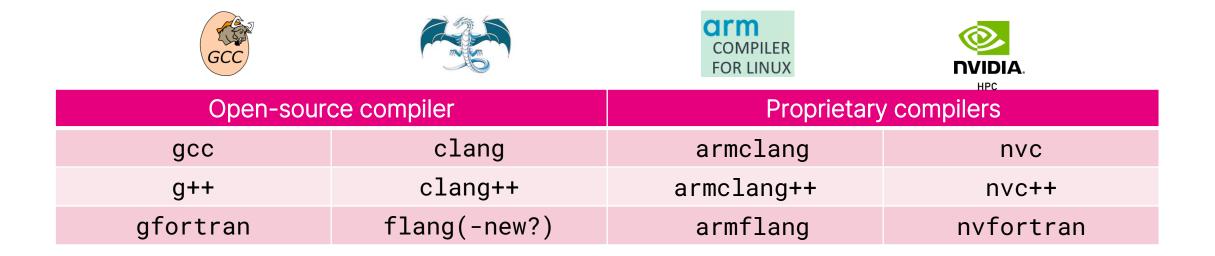
Namely, for Rhea

Bird view of the HPC/AI Stack description

Job schedulers and Resource Management (slurm, etc.)


HPC Applications: Open-source, Owned, and Commercial codes **User-space** App/ISA specific optimizations, optimized libs and intrinsics utilities, scripting, (Arm PL, BLAS, FFTW, etc.) container, and Debug and other packages HPC performance (Singularity, Programming Parallelism analysis tools **Filesystems** Openstack, Languages and standards: (Arm Forge, (BeeGFS, OpenHPC, compilers: (OpenMP, Roque Wave, LUSTRE, ZFS, Python, NumPy, Fortran, C, MPI, SHMEM) TAU, perf, HDFS, GPFS) SciPy, etc.) C++ GCC, papi, likwid, LLVM, etc.) **Communication Stacks and run-times** (Mellanox IB/OFED/HPC-X, OpenMPI, MPICH, MVAPICH2, OpenSHMEM, OpenUCX, HPE MPI, GASPI, MPC)

> Linux OS Distro (SUSE, CENTOS, etc.)


Firmware & BIOS

Cluster Management Tools (Bright, HPE CMU, xCat, Warewulf, etc.)

HPC/IA Stack in details

Compilers, how do I call them?

An ecosystem composed by a variety of actors : ARM, NVIDIA, AWS, Google, Microsoft, SiPearl, ...

-mcpu=native	Target the detected or specific CPU
or neoverse-v1, neoverse-512tvb	(the default mcpu is more generic/slower)

Performance Libraries

Optimized BLAS, LAPACK and FFT for HPC applications

What is a Performance Lirary

- Optimized BLAS, LAPACK, FFT and math.h routines
- FFTW compatible interface for FFT routines
- Sparse linear algebra and batched BLAS support
- Tuned for Arm Neoverse family of processors

Several competitive Libraries

ARMPL

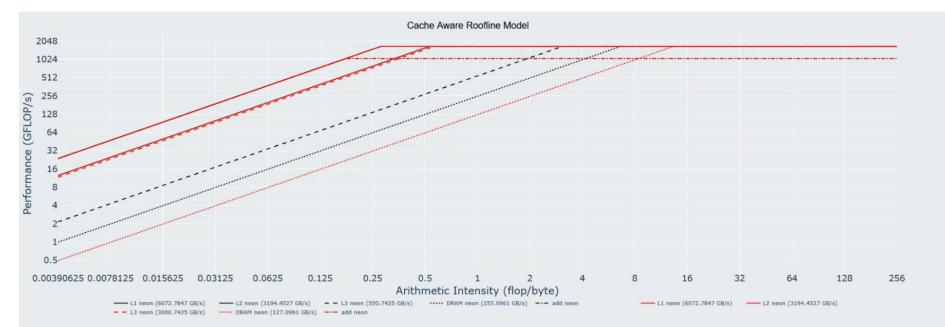
- NVPL
- BLAS
- BLIS
- FFTW,
- PETSc

• ..

FLAG	DESCRIPTION
_ I\$ARMPL_DIR/include	Include directory
-L\$ARMPL_DIR/lib - larmpl_mp	Link against ArmPL Here OpenMP version (_mp)
-L\$ARMPL_DIR/lib - lamath	Link against libamath
(-lgfortran) -lm	Always finish by linking with -Im

Supported by a wide community

your applications


Profiling Tools for Rhea

Name	Typical Use	Typical Scale	Languages	Metrics
Linaro MAP	Initial high-level profile to identify hot spots	Single process to thousands of processes	C, C++, Fortran, Python	Wallclock time, hardware perf, MPI, OpenMP, CUDA, custom
perf	Quick detailed profile of a single process	Single process	Anything, usually compiled	Wallclock time, hardware perf
perf-lib-tools	Math library call profile	Single process	C, C++, Fortran	Count BLAS/LAPACK/FFT calls, call parameters
Maqao	Wide profiling, notably for vectorization	Single node	C,C++,Fortran, Python	Multiple metrics
Carm-roofline	Quick view of performance vs max perf.	Single process/node	C, C++, Fortran	Roofline

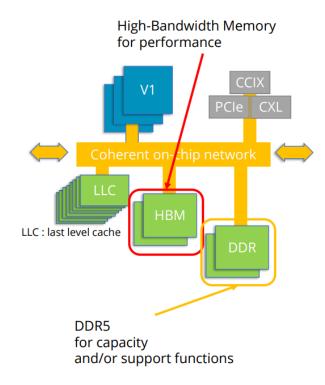
Multiple other tools exist HPCToolkit, TAU, ScoreP, Scalasca, LIKWID, CALIPER, ERT, Callgrind, Dimemas, DiscoPoP, Extrae, PAPI, Paraver,...

Examples of profiling

Loop id	Source Location	Source Function	Coverage run_0 (%)	Vectorization Ratio (%)	Vector Length Use (%)
2186	ecrad_ifs_blocked - radiation_ifs_rrtm.F90:594-595	radiation_ifs_rrtm_gas_optics	5.28	28.57	32.14
3717	ecrad_ifs_blocked - random_numbers_mix.F90:185-192	random_numbers_mix_initialize_random_numbers	3.68	0	14.58
3500	ecrad_ifs_blocked - radiation_two_stream.F90:655-695 []	radiation_two_stream_calc_ref_trans_sw	3.53	92.65	100
2123	ecrad_ifs_blocked - radiation_aerosol_optics.F90:648-656	radiation_aerosol_optics_add_aerosol_optics	2.42	0	25
3517	ecrad_ifs_blocked - radiation_adding_ica_sw.F90:111-116	radiation_adding_ica_sw_adding_ica_sw	2.38	90.48	96.43
3503	ecrad_ifs_blocked - radiation_two_stream.F90:630-647 []	radiation_two_stream_calc_ref_trans_sw	2.36	96.3	100
3507	ecrad_ifs_blocked - radiation_adding_ica_sw.F90:137-144	radiation_adding_ica_sw_adding_ica_sw	2.11	100	100
2514	ecrad_ifs_blocked - radiation_mcica_lw.F90:313-316	radiation_mcica_lw_solver_mcica_lw	2.11	88.89	91.67
2120	ecrad_ifs_blocked - radiation_aerosol_optics.F90:688-696	radiation_aerosol_optics_add_aerosol_optics	2.09	0	25
2102	ecrad_ifs_blocked - radiation_aerosol_optics.F90:756-770	radiation_aerosol_optics_add_aerosol_optics	2.09	0	25
2439	ecrad_ifs_blocked - radiation_mcica_sw.F90:290-294	radiation_mcica_sw_solver_mcica_sw	1.71	90.91	93.18
3866	ecrad_ifs_blocked - srtm_gas_optical_depth.F90:317-320	srtm_gas_optical_depth	1.59	0	25
2121	ecrad_ifs_blocked - radiation_aerosol_optics.F90:713-717	radiation_aerosol_optics_add_aerosol_optics	1.57	0	25
3496	ecrad_ifs_blocked - radiation_two_stream.F90:385-400	radiation_two_stream_calc_no_scattering_transmittance_lw	1.5	100	100
2125	ecrad_ifs_blocked - radiation_aerosol_optics.F90:673-677	radiation_aerosol_optics_add_aerosol_optics	1.3	0	25
3791	ecrad_ifs_blocked - rrtm_gas_optical_depth.F90:180-180	rrtm_gas_optical_depth	1.21	25	31.25
2479	ecrad_ifs_blocked - radiation_cloud_generator.F90:332-388 []	radiation_cloud_generator_generate_column_exp_ran	1	0	23.08
2235	ecrad_ifs_blocked - radiation_ifs_rrtm.F90:509-509	radiation_ifs_rrtm_gas_optics	0.92	100	100

Co-design with Rhea

... Lead by collaborative projects

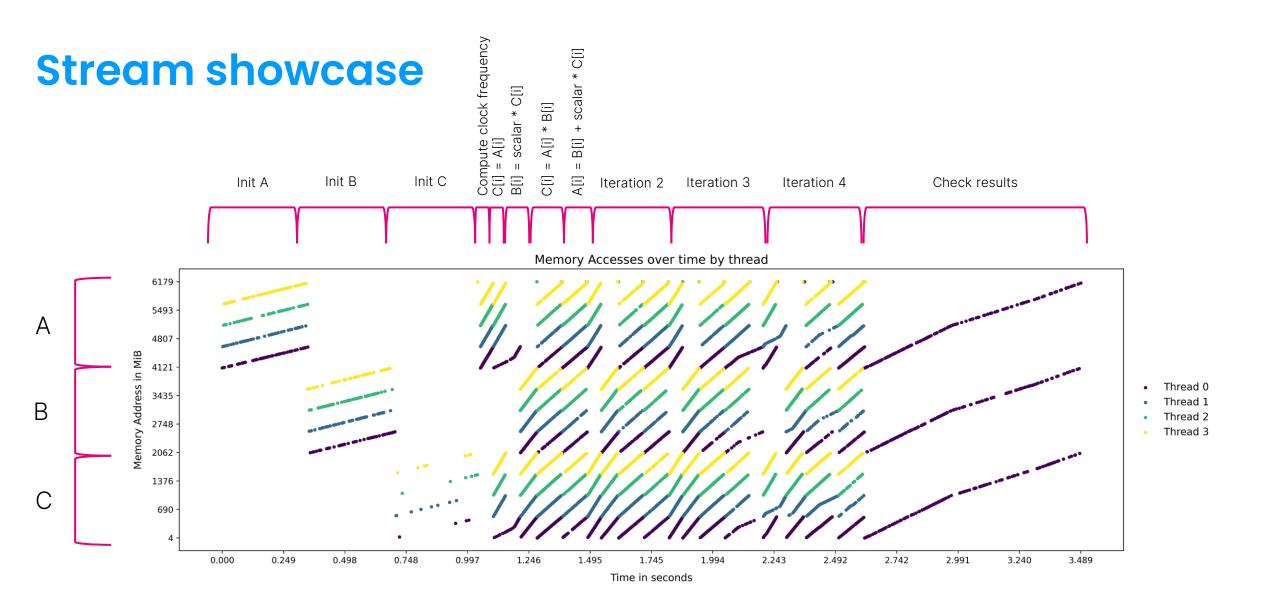

Challenges with Memory Management

Identify « hot » data

- Tools for identifying pattern
- Tools for identifying memory consumption

Exploit data tiering

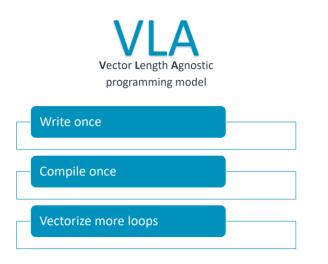
- Tools for automatic migration
- Rewrite applications to only fill HBM


```
void compute(...)
```

```
#memory-alloc(HBM)
int *a = malloc (...)
```

```
#memory-alloc(DDR)
int *b = malloc (...)
```

```
int *c = malloc (...)
int *d = malloc (...)
```


```
// Depending on runtime parameters will migrate dynamically data
// if a,b,c fit in HBM migrate everyone
// Otherwise migrate c and potentially a or b
# memory-schedule {a; b; c}
for (...)
{
    c[i] = a[i]*c[i-1] + b[i]*c[i+1];
}
```


Challenges with Vectorization

VLA Programming

- Rewritte application/LIbraries to be vector-size agnostic
- Vector Length (VL) is a hardware implementation choice from 128 up to 2048 bits
- Predicate-driven loop control and management
- Extended floating-point horizontal reductions:
- SVE ACLE

<pre>void example01(int *restrict a, const int *b, const int *c,</pre>	long N)
{	
long $i = 0;$	
//Pseudo code of vectorization	
<pre>auto predicate = /**/</pre>	
for (; i < N; i += 4)	
{	
<predicate[0]>? a[i] = b[i] + c[i];</predicate[0]>	
<predicate[1]>? a[i+1] = b[i+1] + c[i+1];</predicate[1]>	
<predicate[2]>? a[i+2] = b[i+2] + c[i+2];</predicate[2]>	
<predicate[3]>? a[i+3] = b[i+3] + c[i+3];</predicate[3]>	
3	

Plateform Seine DEMO

SiPearl involved in core European projects to ensure sovereignty

Cloud

Developing an open-source software ecosystem needed to optimize the efficiency of EPI hardware and facilitate the integration of SiPearl's microprocessors in the cloud.

Developing the 1st all-European RISC-V cloud server infrastructure, significantly enhancing Europe's open strategic autonomy.

Centres of Excellence

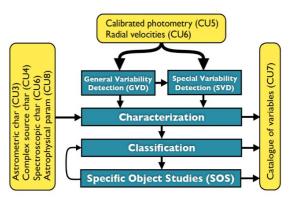
Making some of the most used HPC application suites in engineering and manufacturing work on exascale EuroHPC supercomputers based on SiPearl's microprocessors.

Developing materials modelling, simulations and discovery technologies, and making them accessible to a vast community of researchers.

Developing a custom cloud installation with the guarantee that an entirely European solution can be deployed reproducibly.

Promoting scientific and technological progress in key areas such as magnetic confinement fusion, industrial plasmas, medical applications...

And also regional projects: Emopass (France), FlexFMM (Germany)


AERO – Two interesting pilots

- High-Performance Algorithms for Space Exploration (UNIGE), complex scientific computing use case by the Gaia project and ESA in two fronts
- harness the capabilities of hardware acceleration in the EU cloud (using EPI technologies) especially with the integration of its existing codebases (SOS characterization) with TornadoVM and the rest of the acceleration services that will be developed within AERO
- demonstrate how the EU cloud with its hardware acceleration capabilities can serve the EU scientific community towards faster data processing and delivery.

• HPC/Cloud Database Acceleration for Scientific Computing (SED)

- assist large scale data processing infrastructure providers, such as SEDNAI, to innovate towards achieving higher performance via heterogeneous hardware acceleration in the context of the heterogeneous EU processor and cloud (using EPI technologies).
- demonstrate how the EU cloud can be utilized by HPC/Cloud technology providers to encourage migration and rapid adoption by developing a rich and diverse software stack that can be used out-of-the-box.

VESQ

Figure 8: Data processing flow of CU7 of GAIA.

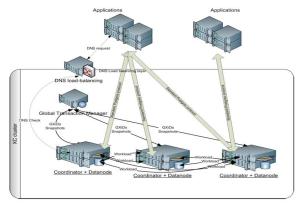
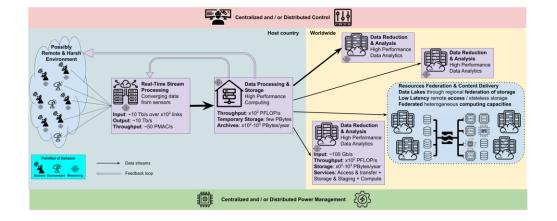


Figure 9: GAIA data processing architecture.

Main objective is to port and optimize those workloads on Rhea


Next Project

ODISSEE – Start in 2025

- Deploy an HW platform based on Rhea and experiment several optimisation (energy efficiency by adding some Al on power management
- 10+ partners including Observatoire de Paris, CNRS, INRIA, BsC, GENCI, SKA, etc.

STREAMS - Proposal done waiting for the answer

- Objective is to use Rhea platform for part of the processing and optimize for real time processing
- Partnership between Observatoire de Paris, SiPearl, CNRS

Main objective are to demonstrate Rhea capabilities on real use cases at scale