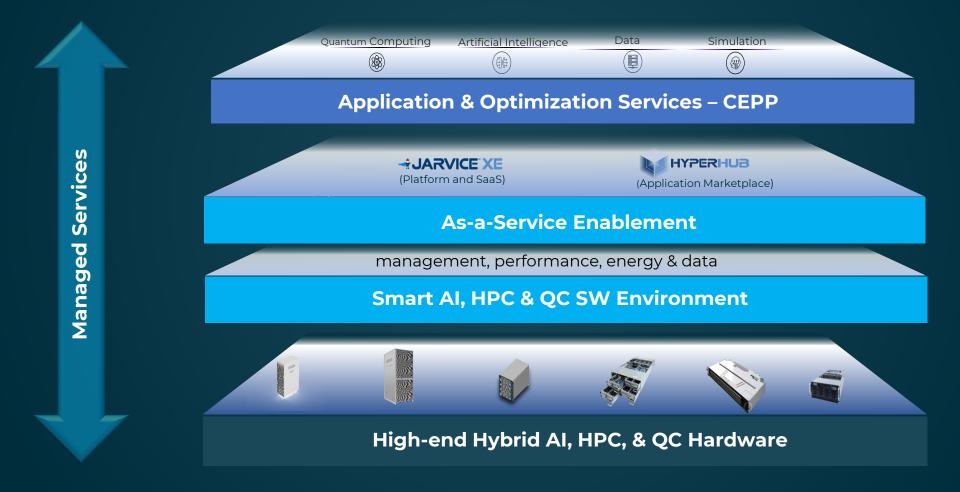


ECLAT Extreme Computing Lab for Astronomical Telescopes

Joint Laboratory

1st Technical Workshop, 27-29 Nov. 2024

Erwan Raffin Collaborative Project Leader HPC Distinguished Expert


© Eviden SAS

01 Eviden CEPP – Center for Excellence in Performance Programming

The Most Advanced High-end AI, HPC, & Quantum Portfolio

On-premises and in the cloud

Eviden CEPP – Center for Excellence in Performance Programming

Collaborative Ecosystem: Our Key Partnerships

Application Optimization

Institutions

Science research
funded projects where
CEPP does HPC
services & co-design

IT Partners

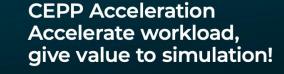
Focus on key IT
partners in HPC, AI &
Quantum

Customers

Taylor-made solutions
on customer KEY
applications and
topics

R&D

Co-design and cocreation between R&D for applications



CEPP – Modular service offers adapted to your needs

4 principal service offerings

CEPP one+ Accelerate workload, give value to simulation!

CEPP Training Accelerate workload, give value to simulation!

CEPP AI4SIM Accelerate workload, give value to simulation!

CEPP – Center for Excellence in Performance Programming

Accelerate workload, give value to simulation

Experienced data scientists with strong HPC expertise to reduce time-to-simulation

Performance optimization, industry-contextualized applications, cluster scalability

Optimize

Reduced cost & energy, leveraging existing code and best practice, on top of the latest technologies

AMD INSTINCT

<u>Center for Excellence in Performance Programming (CEPP)</u>

CEPP Collaborations - HPC AI and Quantum collaboration projects

European technology for exascale

Quantum computing

Cloud

Centre of Excellence for computing applications

Customer Centre of Excellence

International collaboration

A long terms collaboration

- Bull/Atos/Eviden is collaborating for the SKA since 2013
 - 4 co-authors from Eviden of the "French SKA White Book The French Community towards the Square Kilometre Array" for section "Industrial perspectives and solutions"
 - Participation in the 3 SKA France Day events
 - Imager DDFacet benchmarking, profiling and parallelization
 - Exa-SKA PhD thesis co-funding
 - DDFacet new parallelization implementation
 - New algorithm for Gridder/Degridder named G2G, CPU and GPU implementation
 - IDG porting from CUDA to HIP
 - HPC architecture exploration for calibration and imaging in line with SKAO teams
 SCHAAP & SCOOP
 - G2G: separation of the CPU version (public) and the GPU one (on demand)
 - Data Management: IO profiling and optimization of DDFacet

CEPP team:

- David Guibert
- Loris Lucido
- Erwan Raffin

R&D team:

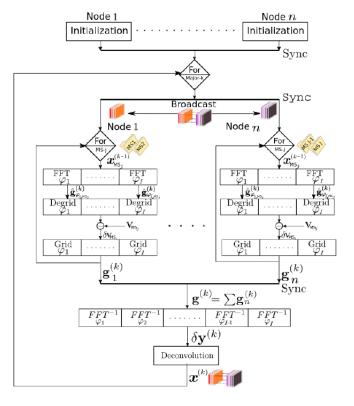
- Sylvie Lesmanne (Hw)
- Grégoire Pichon (Sw)
- Philippe Couvée (Sw)

And many others

Ongoing and Future collaboration

- Ongoing
 - ECLAT: Eviden partie contributrice & membre du Comité de Pilotage
 - DARK ERA (ANR): Eviden part of the advisory board of the project

- Future
 - → to be found!
 - Please wait until the end of this presentation!!!



Collaboration on DDFacet parallelization

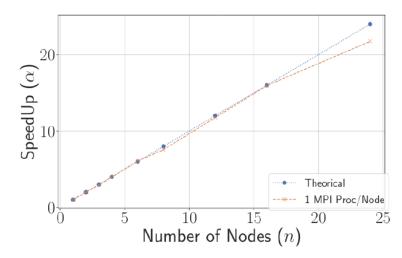
Overview

Big picture

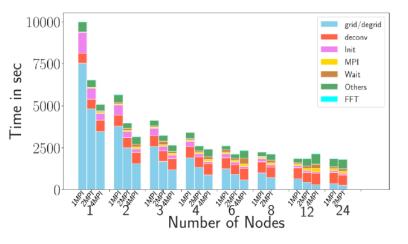
Multi-node parallelization with data distribution

This multi-node implementation ¹ makes two levels of parallelism of DDFacet.

- 1 the first one is based on facets parallelization and shared memory
- 2 the second one is based on Measurement Set parallelization which allows for a distributed memory system.
- if $I_{facets} < nb_{cores}$: under-utilization of the computational resources.
- if we put more MPI processes per node, we can reach more optimal usage of computational resources when


$$I_{facets} \ge \frac{n_{cores}}{n_{mpi}}$$

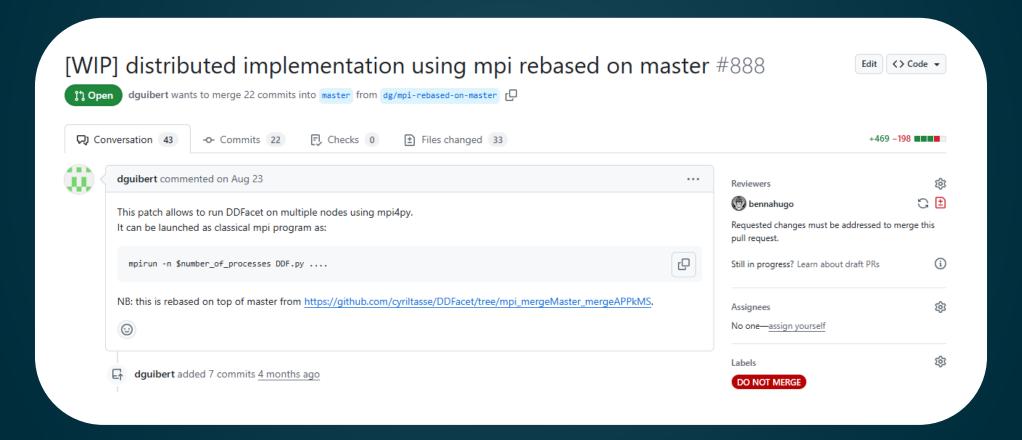
¹ SiPS IEE 2022 paper: Multi-core multi-node parallelization of the radio interferometric imaging pipeline DDFacet



Performance of the MPI parallelisation

 scaling of Gridding/Degridding with 1 MPI process per node

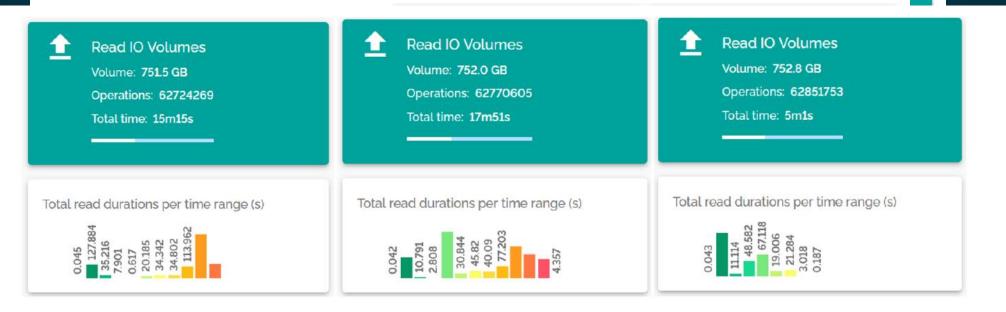
 Profiling of DDFacet for a complete execution with 1, 2 or 4 MPI Proc per node and from 1 to 24 nodes



Collaboration on DDFacet parallelization

Ongoing activity

Merge Request under investigation by DDFacet developers



DDFacet IO characterization

Data Management SW R&D – Internship of Armand Grenier

- Characterization of the DDFacet Input/Output using IOI (IO Instrumentation) tool
- Burst Buffer
- + Prefetch

a- IOI read summary b- IOI read summary using BB c- IOI read summary using BB and prefetch

DDFacet IO characterizationSKAO imager pipeline study and optimization

DP3 et WSClean – Internship of Clément Devatine

- DP3 and WSClean chosen by SKAO as imager pipeline candidate
- Difficult installation on Eviden internal benchmark supercomputer
- Docker image,
- Singularity image,
- By hand
- ✓ With Spack
- Performance analysis of DP3 🛘 Low use of the computational resource
- Proof-of-concept with OpenMP replacing the custom implementation of the internal task-based parallelism
- \square 10% to 30% gain according to the test case
- \square Estimation of a speedup of 2,5x with the proposed optimizations
- Presentation to SKAO in summer 2023.

Gridder/Degridder kernel

IDG and G2G – GPU approach

- IDG Image Domain Gridding
 - Porting CUDA implementation to HIP CUDA and HIP ROCm
 - Performance comparison Nvidia V100 vs AMD M1100
- G2G
 - Following the work of Nicolas Monnier on the Fast grid to grid interpolation for radio interferometric imaging and its CPU and GPU implementation
 - Code takeover by CEPP
 - Test and comparison of the CPU and GPU version
 - Extraction of the CPU version to make it publicly available
 - GPU version is available on-demand for partners

New collaborations

- Eviden is open for collaborations
- Our goal is teaming up for exploratory work toward helping at co-designing and co-sizing the SPCs
 - Application:
 - DDFacet, Grid/Degrid, KillMS, Casacore & Dask MS
 - Dataflow model and tool: SimSDP
 - Hardware architecture
 - BXI v3 Interconnect
 - Smart Data Management
 - Exploration:
 - Interconnect & data movement solution
 - CPU: ARM based platforms, HBM
 - GPU: portability and performance

CEPP team:

- David Guibert
- Loris Lucido
- Erwan Raffin

R&D team:

- Sylvie Lesmanne (Hw)
- Grégoire Pichon (Sw)
- Philippe Couvée (Sw)

And many others

New collaborations

- Application
 - Pipeline DDFacet parallelization, benchmarking, profiling and optimization
 - Vectorization is crucial, is Gridder/Degridder well vectorized?, any GPU version envisioned?
 - KillMS parallelization, benchmarking, profiling and optimization?
 - IO parallelization?
 - G2G
 - GPU version portability and optimization
 - Investigate non-uniform FFT methods and implementations and compare it to DDFacet?

New collaborations

- Interconnect
 - Exploiting BXI offload: update applications to take benefit of BXI offload features (non-blocking MPI calls, collective communications) and optimize compute/communication overlap
 - Improve AI communications: characterize the communication profile of AI workloads to optimize next BXI versions
 - Near real-time communications : how to manage hi-bandwidth continuous communications between Stream Processing and Science Data Processor ?

New collaborations

- Data Management
 - o Multimetrics profiling of the SKA pipeline in different processing configurations, efficiency evaluation and if relevant, memory optimisation
 - o Energy efficiency of the SKA pipeline, power optimization & capping opportunities
 - o Ephemeral IO Services/Datanodes interest in the SKA Science Data Processor

Thank you!

For more information please contact: erwan.raffin@eviden.com

2019, SKAO HQ, Jodrell Bank

2022, SKA France Day

2023, South Africa