Parallelizing radiointerferometric image reconstruction by baselines

Sunrise Wang, Simon Prunet, Shan Mignot, André Ferrari

Laboratoire ECLAT Atelier technique Nov 2024

Outline

Introduction

Parallelization Framework

Applying our Framework to existing reconstruction methods

Results

3

Scaling the computation

Need to scale the computation Partition visibilities, process separately Time and Frequency partitioning relatively trivial, baseline-partitioning more complicated as not all frequencies are available

Distributed and parallel sparse convex optimization for radio interferometry with PURIFY

Luke Pratley^a, Jason D. McEwen^a, Mayeul d'Avezac^b, Xiaohao Cai^a, David Perez-Suarez^b, Ilektra Christidi^b, Roland Guichard^b

^aMullard Space Science Laboratory (MSSL), University College London (UCL), Holmbury St Mary, Surrey RH5 6NT, UK ^bResearch Software Development Group, Research IT Services, University College London (UCL), London WC1E 6BT, UK

Scalable splitting algorithms for big-data interferometric imaging in the SKA era

Alexandru Onose,¹*[†] Rafael E. Carrillo,²[†] Audrey Repetti,¹ Jason D. McEwen,³ Jean-Philippe Thiran,² Jean-Christophe Pesquet⁴ and Yves Wiaux¹

Previous related work

Both works are primal-dual methods that look to solve the measurement operator directly

Implemented in PURIFY[1] framework

Parallelizing image reconstruction by baseline length

Major-Minor Loop Reconstruction

8

8

Applying our Framework to existing reconstruction methods

Deconvolution framework for every major cycle *n*, similar to [1, 2] $\alpha_n = \arg \min_{\alpha} \|\tilde{\imath}_n - HW\alpha\|_2^2 + \lambda_n \|\alpha\|_1$ $\bar{\imath}_n = W\alpha_n$

 $\begin{array}{c} \text{Deconvolution framework for every major cycle} n, \text{ similar to } [1,2] \\ \alpha_n = \arg\min_{\alpha} \|\tilde{\imath}_n - HW\alpha\|_2^2 + \lambda_n \|\alpha\|_1 \\ \hline{\imath}_n = W\alpha_n \\ \hline{\imath}_n = W\alpha_n \\ \end{array}$

Deconvolution framework for every major cycle *n*, similar to [1, 2] $\alpha_n = \arg \min_{\alpha} \|\tilde{\imath}_n - HW\alpha\|_2^2 + \lambda_n \|\alpha\|_1$ $\bar{\imath}_n = W\alpha_n$

$$V_{\mathcal{L}} \text{ deconvolution}$$

$$\alpha_{V_{\mathcal{L}_n}} = \arg\min_{\alpha} \|G_{\mathcal{L}}(\tilde{\imath}_{\mathcal{L}_n} - H_{\mathcal{L}}W\alpha)\|_2^2 + \|G_{\mathcal{H}}(h_n - W\alpha)\|_2^2 + \lambda_{V_{\mathcal{L}_n}}\|\alpha\|_1$$

$$\bar{\imath}_{V_{\mathcal{L}_n}} = W\alpha_{V_{\mathcal{L}_n}}, h_n = \sum_{j=1}^{n-1} \bar{\imath}_{V_{\mathcal{H}_j}} - \sum_{j=1}^{n-1} \bar{\imath}_{V_{\mathcal{L}_n}} = \hat{\imath}_{V_{\mathcal{H}_{n-1}}} - \hat{\imath}_{V_{\mathcal{L}_{n-1}}}$$

Deconvolution framework for every major cycle *n*, similar to [1, 2] $\alpha_n = \arg \min_{\alpha} \|\tilde{\imath}_n - HW\alpha\|_2^2 + \lambda_n \|\alpha\|_1$ $\bar{\imath}_n = W\alpha_n$

Visibility datafidelity term

$$V_{\mathcal{L}} \text{ deconvolution}$$

$$\alpha_{\mathcal{V}_{\mathcal{L}_n}} = \arg\min_{\alpha} \|G_{\mathcal{L}}(\tilde{\imath}_{\mathcal{L}_n} - H_{\mathcal{L}}W\alpha)\|_2^2 + \|G_{\mathcal{H}}(h_n - W\alpha)\|_2^2 + \lambda_{\mathcal{V}_{\mathcal{L}_n}}\|\alpha\|_1$$

$$\bar{\imath}_{\mathcal{V}_{\mathcal{L}_n}} = W\alpha_{\mathcal{V}_{\mathcal{L}_n}}, h_n = \sum_{j=1}^{n-1} \bar{\imath}_{\mathcal{V}_{\mathcal{H}_j}} - \sum_{j=1}^{n-1} \bar{\imath}_{\mathcal{V}_{\mathcal{L}_n}} = \hat{\imath}_{\mathcal{V}_{\mathcal{H}_{n-1}}} - \hat{\imath}_{\mathcal{V}_{\mathcal{L}_{n-1}}}$$

Deconvolution framework for every major cycle n, similar to [1, 2] $\alpha_n = \arg\min_{\alpha} \|\tilde{\imath}_n - HW\alpha\|_2^2 + \lambda_n \|\alpha\|_1$ $\bar{\imath}_n = W \alpha_n$ Additional data-fidelity term Visibility datafor rest of frequency fidelity term information (only from 2nd major cycle $V_{\mathcal{L}}$ deconvolution onwards) $\alpha_{\mathcal{V}_{\mathcal{L}_n}} = \arg\min_{\alpha} \|G_{\mathcal{L}}(\tilde{\imath}_{\mathcal{L}_n} - H_{\mathcal{L}}W\alpha)\|_2^2 + \|G_{\mathcal{H}}(h_n - W\alpha)\|_2^2 + \lambda_{\mathcal{V}_{\mathcal{L}_n}}\|\alpha\|_1$ n-1 $\bar{\imath}_{\mathcal{V}_{\mathcal{L}_n}} = W\alpha_{\mathcal{V}_{\mathcal{L}_n}}, h_n = \sum_{n=1}^{n-1} \bar{\imath}_{\mathcal{V}_{\mathcal{H}_j}} - \sum_{n=1}^{n-1} \bar{\imath}_{\mathcal{V}_{\mathcal{L}_n}} = \hat{\imath}_{\mathcal{V}_{\mathcal{H}_{n-1}}} - \hat{\imath}_{\mathcal{V}_{\mathcal{L}_{n-1}}}$

Parallelized MS-CLEAN reconstruction

CLEAN iteratively removes the brightest source at the most relevant scale convolved by the psf from the residual[1]. We can denote this as:

 $\bar{\imath}_n = \text{MS-CLEAN}(\tilde{\imath}_n, p)$

Parallelized MS-CLEAN reconstruction

CLEAN iteratively removes the brightest source at the most relevant scale convolved by the psf from the residual[1]. We can denote this as:

 $\bar{\imath}_n = \text{MS-CLEAN}(\tilde{\imath}_n, p)$

 $V_{\mathcal{L}} \text{ deconvolution}$ $\bar{\imath}_{\mathcal{V}_{\mathcal{L}_n}} = \text{MS-CLEAN}(\alpha G_{\mathcal{L}} \tilde{\imath}_{\mathcal{L}_n} + \beta G_{\mathcal{H}} H_{\mathcal{H}} h_n, \alpha G_{\mathcal{L}} p_{\mathcal{L}} + \beta G_{\mathcal{H}} p_{\mathcal{H}})$ $h_n = \sum_{j=1}^{n-1} \bar{\imath}_{\mathcal{V}_{\mathcal{H}_j}} - \sum_{j=1}^{n-1} \bar{\imath}_{\mathcal{V}_{\mathcal{L}_j}}$

Parallelized MS-CLEAN reconstruction

CLEAN iteratively removes the brightest source at the most relevant scale convolved by the psf from the residual[1]. We can denote this as:

 $\bar{\imath}_n = \text{MS-CLEAN}(\tilde{\imath}_n, p)$

Results (Preliminary)

Results – datasets

Simulated

Sgr A

Sgr B2

Sgr C

- Initial images tapered and cutout from 1.28GHz mosaic produced in [1]
- Visibilities generated with Meerkat, SKA-Mid AA4, and SKA-Low AA4 configurations
- Observation time of HA=[-2,2] with integration times of 120s, 30s, and 120s respectively, 1 channel at a pseudo-frequency of 1GHz
- Degrid to get visibility values
- Visibility noise artificially added (to be ~2% of average signal)
- Angular resolutions of 3.815", 0.18", 0.429" respectively
- > Pixel resolutions of 512x512
- Pseudo declinations also used to vary uvcoverages (-40, -35, -50 respectively)
- Datasets taken from ALMA long baselines survey[2] and the VLA observation described in [3] for HL Tau and Cygnus A respectively
- ALMA Band 6 observation used for HL Tau (224.750GHz - 228.750GHz, 239.250 - 243.250 GHz, 4 spectral windows, 4 channels per spectral window, configuration 10)
- First spectral window (of 8) of VLA S-band used for Cygnus A (64 channels @ 1988.5 MHz – 2020.5 MHz, all 4 configurations)
- > Angular resolutions of 0.005" and 0.125" respectively
- Pixel resolutions of 1500x1500 and 1728x1728 respectively

Dataset	ℓ	$\mathrm{V}_{\mathcal{L}}$	$\mathrm{V}_{\mathcal{H}}$	$V_{\mathcal{L}\cap\mathcal{H}}$
Sgr A	30	132648	121140	4188
Sgr B2	20	6989812	2532615	160987
Sgr C	25	9053277	6811266	105183
HL Tau	60	39864808	46243732	605916
Cygnus A	40	41645824	41828032	1227264

Results – partitioned datasets

- > Ideally want to create even-sized partitions
- Difficult for Sgr B2 dataset due to SKA-Mid AA4 array (BDA[1] or something similar may be needed)
- Mostly even partitionings for rest of datasets, with the exception of Sgr C which was partitioned slightly more unevenly for testing purposes

Results – Simulated

S/N compared to ground truths

1800

Results – Simulated

22

20

18

14

12

10

N/S

ground truths Sgr C 22.5 20.0 · 17.5 ¥ √S 15.0 12.5

800

1000

S/N compared to

10.0

7.5

Additional inefficiencies with RASCIL

200

175

150

آن 125

100 II

75

50

25

900

Sgr B2

serial l¹ recon

1000

serial ms-clean recon

parallel ms-clean recon

parallel l^1 recon

1100

15

serial l¹ recon

1600

1400

serial ms-clean recon

parallel l¹ recon

parallel ms-clean recon

1800

Conclusions and Future Work

To conclude:

- Parallelization framework for reconstructing radio-interferometric images by baseline length
- Applied to both ms-clean and L1 regularized methods
- Showing promising results but needs further testing
- Some drawbacks include the methods being more tricky to regularize, and needing at least two major-cycles.

Future work:

- Investigate more partitions and datasets that require more major-cycles to reconstruct
- More optimized implementation with profiling, preferably in a more performant language and not being based on RASCIL.
- Investigate possible visibility reduction techniques for better partitioning for SKA-Mid.

Thank you! Questions?

Appendices

Selection of λ

Across different datasets for first majorcycle:

Across first three major-cycles for Sgr A dataset:

Results suggest that lambda should be normalized by the norm of the image, and be increased as the major-cycles progress to maximize RMSE/PSNR.

IUWT vs Daubechies

IUWT seems worse at reconstructing large-scale extended emissions, possibly due to its isotropic nature.

Filters

$$r > \ell + \delta : |g_{\mathcal{H}}(r)|^{2} = 1/\sigma^{2}, \ g_{\mathcal{L}}(u) = 0$$

$$r < \ell - \delta : g_{\mathcal{H}}(r) = 0, \ |g_{\mathcal{L}}(r)|^{2} = 1/\eta^{2}$$

$$\ell - \delta < r < \ell + \delta : \sigma^{2}|g_{\mathcal{H}}(r)|^{2} + \eta^{2}|g_{\mathcal{L}}(r)|^{2} = 1$$
0.5

$$g_{\mathcal{L}}(r) = \alpha(r) \left(1 - \sin\left(\frac{\pi}{2\delta}(r-\ell)\right) \right)$$
$$g_{\mathcal{H}}(r) = \alpha(r) \left(1 + \sin\left(\frac{\pi}{2\delta}(r-\ell)\right) \right)$$

Results: Partition configuration affect on reconstruction accuracy and speed, FISTA

22

Pipelined parallelization strategy

Pipelined parallelization strategy

Low-resolution step remains the sameFor the full-resolution step:

$$l_n = \sum_{j=1}^{N} \bar{\imath}_{\mathcal{L}_j} - \sum_{j=1}^{n-1} \bar{\imath}_j = \hat{\imath}_{\mathcal{L}} - \hat{\imath}_{n-1}$$

changes to:

$$l_n = \sum_{j=1}^n \bar{\imath}_{\mathcal{L}_j} - \sum_{j=1}^{n-1} \bar{\imath}_j = \hat{\imath}_{\mathcal{L}_{n-1}} - \hat{\imath}_{n-1} + \bar{\imath}_{\mathcal{L}_n}$$

> Can result in waiting if computation costs of each step not similar

- Asynchronous strategy can alleviate this somewhat
- Quality upper bound of serial (but most likely slightly worse)
- One image transmitted per major cycle

Results: Reconstruction quality of pipelined parallel method

25

Parallelization by baseline length – A naïve approach

Just adding separately deconvolved images

- Initial images tapered and cutout from 1.28GHz mosaic produced in [1]
- Visibilities generated with Meerkat configuration
- Exposure time of 4h, samples every 120s for to generate visibility positions
- Degrid to get visibility values
- Visibility noise artificially added

Naïve parallel reconstructions seem always worse. Maybe can regularize and combine to achieve similar quality but unclear how.

Evaluating reconstructions on real datasets

Noise reference image (via jackknife) Residual

Wasserstein Distance in 5x5 sliding window

