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Image credits:
Toothbrush: https://www.nasa.gov/mission_pages/chandra/toothbrush-cluster-rx-j060334214.html
Centaurus A: https://www.eso.org/public/images/eso0903a/
Jupiter: https://www.windows2universe.org/jupiter/magnetosphere/J_radio_emissions.html

Non-Thermal Universe
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M. Brienza

At a given age of an astrophysical plasma, it 
will emit synchrotron - but emission falls 
precipitously above a break frequency

By going to lower frequencies, it becomes 
possible to see the plasma still emitting at 
these lower energies - “fossil” emission.

Archeology
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Kappes et al. :  Subarcsecond view on the high-redshift blazar GB 1508+5714 by the International LOFAR 
Telescope
https://arxiv.org/abs/2205.11288
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Harris et al. : LOFAR Observations of 4C+19.44: On the Discovery of 
Low-frequency Spectral Curvature in Relativistic Jet Knots

https://ui.adsabs.harvard.edu/abs/2019ApJ...873...21H/abstract
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LOFAR: the LOw Frequency Array

HBA

LBA

(NenuFAR)

Image credit: Nancay twitter account https://twitter.com/ssl_nancay/status/611901153635381248
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https://arxiv.org/pdf/1305.3550
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Stations:
24 core
14 remote
14 international
+2 in construction
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The inverse problem of interferometry: the "truth"

North Liberty telescope image source: https://www.thegazette.com/2013/10/08/north-liberty-telescope-peers-into-deep-space

Signal from entire sky is measured

...affected by IGM…

IGM
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North Liberty telescope image source: https://www.thegazette.com/2013/10/08/north-liberty-telescope-peers-into-deep-space

Signal from entire sky is measured

...affected by IGM…

...the impact of the Ionosphere…

...the antenna gains…

...clock errors between stations…
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The inverse problem of interferometry: the "truth"

North Liberty telescope image source: https://www.thegazette.com/2013/10/08/north-liberty-telescope-peers-into-deep-space

Signal from entire sky is measured

...affected by IGM…

...the impact of the Ionosphere…

...the antenna gains…

...clock errors between stations…

   ...antenna beam…

   ...radio frequency interference…
  
   ...and more besides……..

IGM

Ionosphere

Gains Gains

⌚ ⌚

Beam Beam

RFI

RFI
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Calibration

Measurements are voltages - not physical flux!

To correct, modern approach is Radio Interferometer’s Measurement Equation:

which implies assuming that measured voltage is linear function of sky signal. All 
above are 2x2 complex-valued matrices: calibration consists of solving for Jsp.

(cf. Smirnov 2011 and associated papers)

 + N

 + N
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Calibration

Measurements are voltages - not physical flux!

To correct, modern approach is Radio Interferometer’s Measurement Equation:

which implies assuming that measured voltage is linear function of sky signal. All 
above are 2x2 complex-valued matrices: calibration consists of solving for Jsp.

(cf. Smirnov 2011 and associated papers)

 + N

 + N

Brightness in 
direction s

= GpEspKsp

Noise
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Generational Calibration

Very(!) roughly:

- 1GC, in the words of Jan Noordam, is comparing the signal of each baseline 
to the signal from a known source (the calibrator).

- 2GC is self-calibration: post-processing adaptive optics.

- 3GC is the above with direction-dependent effects taken into account.
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Self-calibration as Adaptive Optics
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Conditioning & Regularisation

Inverse problem: not convex, poorly-conditioned regularise
23



Pros:
- Homogeneous arrays (usually)
- Large number of array elements
- Supersynthesis + large bandwidth
- Shared clocks for signal correlation

Interferometry inverse problem

Cons:
- Much larger data for each new element
- Combination of short and long baselines
- Larger FoVs - > more complex fields
- Better sensitivity -> more complex fields
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VLBI inverse problem

Pros:
- Small field of view
- All baselines of comparable lengths
- No short baselines -> no pollution 

from Galactic emission
- Small data size (post-correlation…)
- Robust, reliable, expert tools 

available (difmap, ehtim)

Cons:
- Very few array elements
- Heterogeneous arrays
- Few baselines -> bad conditioning
- True for both calibration and imaging
- Bursts of short integration times 25



https://www.aanda.org/articles/aa/full_html/2022/02/aa40649-21/aa
40649-21.html
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https://www.aanda.org/articles/aa/full_html/2022/02/aa40649-21/aa
40649-21.html

Pr
e-

VL
B

I
LO

FA
R

-V
LB

I

27



https://www.aanda.org/articles/aa/full_html/2022/02/aa40649-21/aa
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https://fermi.gsfc.nasa.gov/science/eteu/agn/

SED for PKS 0637-752 Perlman et al. (2019)

Blazars

● AGN pointed towards us

● Usually quite compact

● Significant relativistic boosting

● Emission from radio to gamma
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OJ287 in optical

● Persistent V-band variability (cf M. Valtonen 

et al, right)

● Observed with Herschel at 250, 350, 500 

micrometers (cf M. Kidger et al, bottom)

● Monitoring ongoing - optical variability key 

driver for continuing observations!
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OJ287 in X-rays

● X-ray emission from core consistent 

with FR-I AGN (A. Marscher 2011)

● Unusual: Mpc-scale X-ray jet!

● Multiple knot features detected

● Question: synchrotron or IC/CMB?

● Estimate of B-field ~ 5 microG, minimum e⁻ 

energy 7-40 mec², doppler factor ~8 at J2

● Jet bent consistent with standing shocks 

inclined by ~7deg to jet axis 31



OJ287 in radio

Ilje Cho et al 2024

E Perlmann et al 1994
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LOFAR-VLBI: resolving structure
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https://github.com/ebonnassieux/Scripts/blob/master/NeReVar.py
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LOFAR-VLBI
122-160 MHz

z = 0.3 68 kpc

LOFAR-VLBI: resolving structure

36

● Spectral index analysis a 
powerful tool to probe plasma 
properties

● Core behaviour consistent with 
higher-freq constraints

● Knot behaviour consistent with 
local re-acceleration 

● Terminus spectrum consistent 
with AGN “hotspot” plasma!

● Preliminary - flux scale 
validation ongoing
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LOFAR-VLBI: 4-Stokes Stokes-I

Stokes-U

Stokes-Q

Stokes-V

● Preliminary work: 
calibration errors remain

● This due to calib. strategy

● Structure shown here 
driven by data

● Showing intermediate 
data, to maximise contrast.

● Instrument sensitive from 
0.2-20arcsec scales.
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LOFAR-VLBI: Frac. pol.

● Fractional polarisation 
generally between 0 - 0.4

● Suggestion of depolarised 
spine in the jet; more likely 
tracer of signal-to-noise

● Larger mask degrades 
reconstruction (MSMF)
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LOFAR-VLBI: EVPA

● 4 / 8h ILT reduced.

● Polcal converged: LOFAR 
Pipelines + facet_self_cal + 
kMS/DDF

● Preliminary results: EVPA of 
fossil plasma acquired 
along jet.
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Future Work

44
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⍺ = 0.38

⍺ = -0.51

⍺ = -0.46
⍺ = -0.40

⍺ < -0.97

⍺ < -1.19

etienne.bonnassieux@uni-wuerzburg.de

⍺ = -0.64

● Publish current results - first 
ILT pol. map

● Complement with uGMRT

● RM-Synthesis 144-850 MHz

● EVN, e-MERLIN L-band

● Full spectral curvature study

● SED modeling along jet
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Conclusion

45
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● First ILT polarisation map

● New jet components detected

● Counterjet still not detected

● Multi-scale coverage critical
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OJ287

● BL Lacerta object, discovered in 1967, monitoring since 1890, z = 0.306

● Major outburst fluctuations of ~ 12 years

● Candidate for binary black hole (Sillanpaa 1988): 

○ major flare predicted for 1994 in 1988; measured and confirmed then.

● Binary orbit parameters (H. Lehto & M. Valtonen):

○ Eccentricity 0.68, (redshifted) period 12.07yr, (relativistic) precession 

130yr, inclination of accretion disk in sky 4deg

○ Secondary black hole mass 1e8 M_sun

○ Current semimajor axis of orbit, 0.056pc
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The inverse problem of interferometry: the observation

48(expected)

RIME

V=f(sky, ionosphere, 
beam, gains, RFI, ...)
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