
DDF Benchmarking at LAB

1Valentin Hazard DDFacet/KillMS Benchmarking 2024/11/29



Systèmes Electroniques et Informatique Instrumentale

2Valentin Hazard DDFacet/KillMS Benchmarking 2024/11/29

SE2I Projects:

o Exploring the solar system

ChemCam (Curiosity), SuperCam (Perseverance), MIRS (MMX), ExoMars

o Ground instrumentation

Atacama Large subMillimeter Array (ALMA + WSU 2030), SPIAKID



Example of execution on the ALCOR server

3Valentin Hazard DDFacet/KillMS Benchmarking 

Deconv

D

D

D

D

DI

DD

Measurement set :

LOFAR 121MHz

L526161 - SB244 

1288A51A4t

2024/11/29



Example of execution on the ALCOR server

4Valentin Hazard DDFacet/KillMS Benchmarking 

• CPU AMD EPYC 7H12 64-Core Processor (128 logical cores at 2,6GHz max) + 1 TiB RAM

• Initial use of a Singularity container to port the application to our machine

2024/11/29

DDF.py Perf.parset --Output-Name Perf-{numcores} --Output-Mode Clean --Deconv-MaxMajorIter 1 --Data-
ColName DATA --Parallel-NCPU={numcores}

• Benchmarked execution



Profiling script (python)

5Valentin Hazard DDFacet/KillMS Benchmarking 2024/11/29

• Use of DDFacet logs to profile the execution time of the various stages

• Performance degradation > 64 cores: NUMEXPR_MAX_THREADS variable?

• Evolution of the duration of the various DDFacet stages as a function of the number of cores



Profiling with Btop

6Valentin Hazard DDFacet/KillMS Benchmarking 

• Exploitation of the 128 logical cores of the CPU during the execution on ALCOR (LAB)

• CPU : AMD EPYC 7H12 64-Core Processor

• Profiling : Btop++ (https://github.com/aristocratos/btop)

2024/11/29

https://github.com/aristocratos/btop


Profiling with Btop

7Valentin Hazard DDFacet/KillMS Benchmarking 

• CPU core utilisation over time

• Labelling the different stages of the DDFacet Pipeline

2024/11/29

Residual

Grid / Degrid / FFT / MPF

Evolve

pop
Island 

HMP

Deconvolution

MSMF
Island 

Multislice

Time (1 tick = 2 seconds)

C
P

U
 L

o
a
d



Profiling with Perf

8Valentin Hazard DDFacet/KillMS Benchmarking 

• CPU consumption broken down by low-level function call, depending on DDF current stage

2024/11/29

Evolve pop

Island HMP
Deconvolution

MSMF

Residual

Grid / Degrid / 

FFT / MPF



Profiling with BenchMonSPC

9Valentin Hazard DDFacet/KillMS Benchmarking 2024/11/29

Profiling CPU Load, 

Memory, Disk, & Files

BenchMonSPC

Auteurs :

Anass Serhani

Shan Mignot

Data set :

24MS from LOFAR

L526161 - SB244

Server :

ALCOR (DAS06)

DDFacet

50-minute run



I/O Profiling

10Valentin Hazard DDFacet/KillMS Benchmarking 

• Iheb Becher (M2 internship at LAB & INRIA) worked to use Darshan and profile IOs with a 

trace report, using dynamic instrumentation

• Darshan's libdarshan library intercepts system function calls, relying on two main 

components: darshan-core and darshan-common.

2024/11/29

Darshan execution environment

• Darshan Python API (PyDarshan):

 Read Darshan trace files (.darshan)

 Accessing metadata

 Exploration of I/O modules



I/O Profiling

11Valentin Hazard DDFacet/KillMS Benchmarking 

• Preliminary I/O profiling results on a single DDFacet run (10-minute execution)

2024/11/29

Data access model by file system

I/O time of DDFacet relative to total execution time

• Note: this doesn't necessarily mean there's an I/O 

bottleneck, as DDFacet executes asynchronously

• Darshan fails to capture all write operations by DDFacet, 

as it underestimates the total cache file size (e.g. 51.64 

GB vs. 11.43 GB) measured by a system script



12DDFacet/KillMS BenchmarkingValentin Hazard 2024/11/29

Software deployment

• Several deployment solutions have been tested so far for the DDF pipeline, as an 

alternative to the use of Singularity containers (Spack & Guix)

• The main challenges are deploying code to ensure reproducible environments and 

optimizing execution performance on the target machine

• ⌛ Spack deployment with the help of David Guibert (Eviden). This development is at 

standstill, error compiling sources (github.com/dguibert/spack/tree/dg/ddfacet-busy-week)

• ☑ Development of Guix package to deploy DDFacet, work carried out by Olivier Aumage

(INRIA - STORM). Functional and deployed on PlaFRIM and ALCOR

https://github.com/dguibert/spack/tree/dg/ddfacet-busy-week


13DDFacet/KillMS BenchmarkingValentin Hazard 2024/11/29

What do to next?

• Coordinate efforts between different labs & industry within ECLAT

• New HR: contract hire to join the CSSD team at LAB for 2025 to work on this particular 

topic (as part of NumPEx)

• There's still work to be done on software deployment, on both DDF and ICAL pipelines

• Understanding the algorithms and orchestration of imaging software remains a weak spot



14DDFacet/KillMS BenchmarkingValentin Hazard 2024/11/29

Spack vs Guix

• Python packages

• Does not require root to 

build

• Does dependency

resolution

• Binaries are relocatable

• Lightweight

• Easy to deploy with root 

access

• More precise descriptions 

for large environments


