

Finanziato dall'Unione europea NextGenerationEU

Advancing radioastronomy into the era of High Performance Computing: the case of Imaging

CLAUDIO GHELLER

INAF – INSTITUTE OF RADIOASTRONOMY BOLOGNA

Emanuele De Rubeis (UniBO-IRA), Giuliano Taffoni (OATS), Giovanni Lacopo (OATS), Luca Tornatore (OATS), David Goz (OATS)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

RADIOASTRONOMY SOFTWARE

- Working at the interface between radioastronomy HPC, my focus is:
- trying to enable the software used for the processing and analysis of radio data to effectively exploit supercomputing solutions,
- address the challenge posed by increasingly larger and complex datasets.
- Providing solutions to improve current codes (NOT to replace them) – WSClean

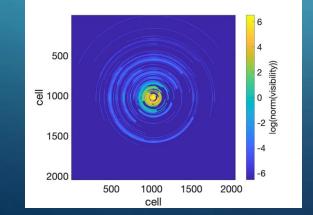
• MOVING TOWARD HPC HPC currently me

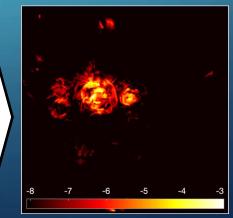
Parallel-Distril

 \bigcirc

- Parallel-multit
- Accelerated cc
- Memory optimination
- Parallel I/O
- Access to Obje
- High-performa
- Integration with
- Containers

CASE STUDY: IMAGING


Consider the state


Essentially, we want to invert the following integral:

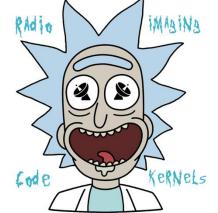
$$V(u, v, w) = \int \int \frac{I(l, m)}{\sqrt{1 - l^2 - m^2}} \times e^{-2\pi i \left(ul + vm + w \left(\sqrt{1 - l^2 - m^2} - 1\right)\right)} dl dm$$

that **maps** the visibilities V measured from the interferometer to the sky brightness I, providing the actual image of the sky.

(*u*, *v*, *w*) are the baselines coordinates, and (*l*, *m*) are the sky coordinates.

[°]IMAGING: MAIN STEPS

Imaging is a 5D problem: 3 spatial dimensions, frequencies, polarisations. It requires essentially 3 **computational demanding** operations:

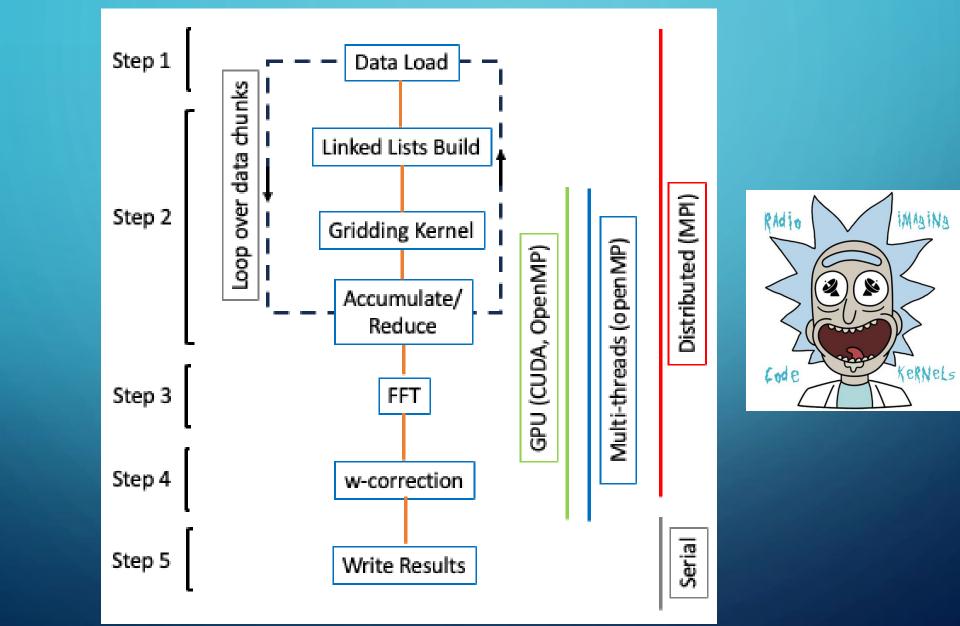

- Discretization of the problem → map visibilities on a regular mesh (needed for FFT) + weighting + tapering
- 2. FFT transform from Fourier to Real space
- 3. (W-correction, if needed, to correct for Earth curvature)

These operations represent computational challenges that can benefit from High Performance Computing.

RICK (Radio Imaging Code Kernels)

- RICK (Radio Imaging Code Kernels) is a code that addresses the gridding, FFT and w-correction, combining parallel and accelerated solutions.
- It is being designed not to substitute radioastronomy codes but to provide specific solutions, portable and fast
- C, C++, CUDA, HIP (for AMD GPUs)
- MPI & OpenMP parallel, fully working in parallel

- It can run on GPUs (both CUDA and OpenMP for GPU offloading), in particular the FFT using the distributed CUDA library cuFFTMp
- An optimized version of the reduce has been developed on both CPU (combining MPI+OpenMP) and GPU (using NCCL or RCCL, for Nvidia and AMD respectively)


RICK HPC architecture

 \cap

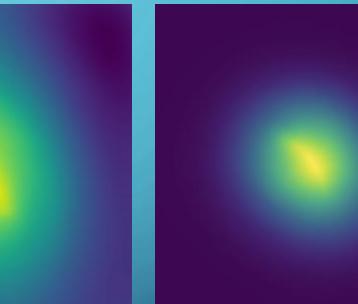
 \bigcirc

The code is publicly available at https://www.ict.inaf.it/gitlab/claudio.gheller/hpc_imaging

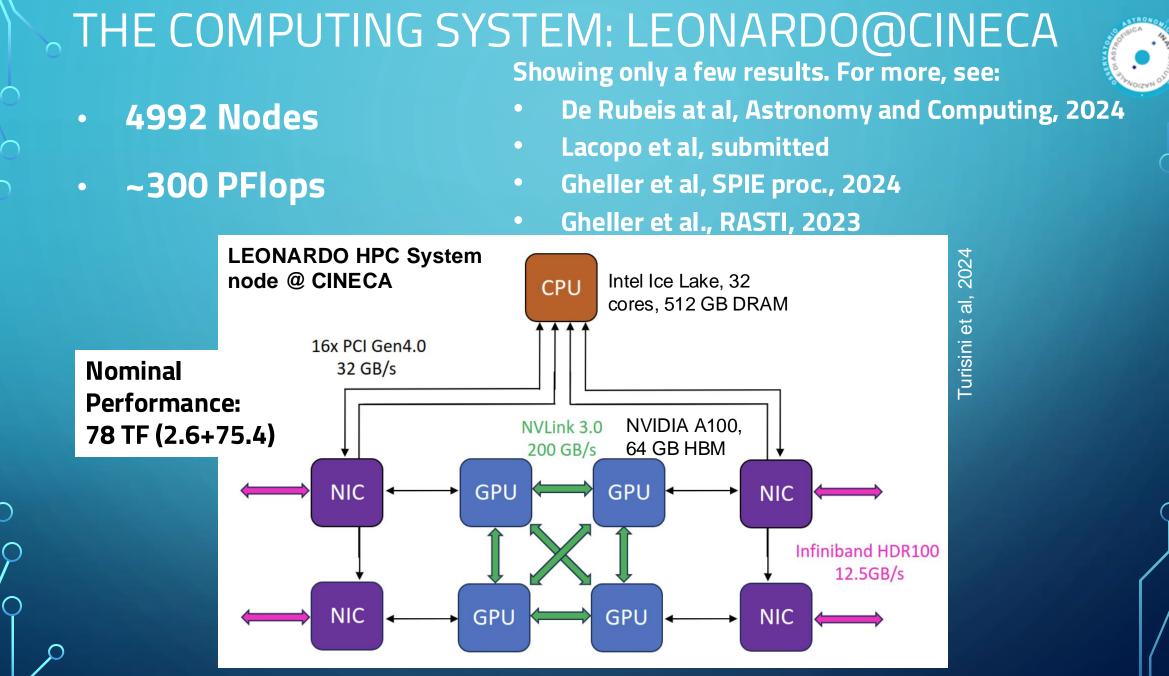


RICK: DOES IT WORK?

Deconvolved image



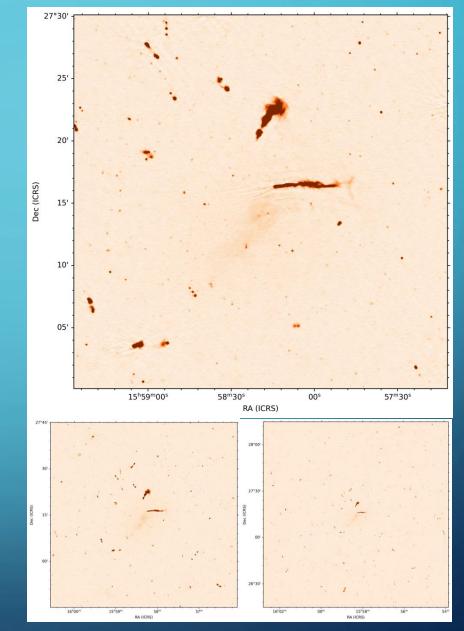
The dataset refers to the "Original TRG", a head-tail radio galaxy in the galaxy cluster Abell 2255


WSClean

RICK

Dirty image, weighting natural, size: 4096x4096x100

- 1891 baselines
- 146 MHz, 4 polarizations
- 8 hrs


Data:

- 543 million visibilities
- 4.5 GB

Mesh/Image:

- 4096x4096 px, 80 MB
- 4096x4096x16, 430 MB

Memory Usage • ~ 10 GB

Curtesy of Luca Bruno

SINGLE CORE (single node test)

Our BASELINE

 \cap

 \bigcap

Threads	GPUs	Gridding [sec]	FFT [sec]	w-stack [sec]	Comm. [sec]	Total [sec]
1	0	322.06 ± 2.95	$30.01 {\pm} 0.54$	$26.08 \pm \ 0.03$	0	418.07 ± 3.25

MULTICORE (single node test)

OpenMP Multithreading allows to use all the cores of a CPU, accessing all its memory

Threads	GPUs	Gridding [sec]	FFT [sec]	w-stack [sec]	Comm. [sec]	Total [sec]
1	0	$322.06 \pm \ 2.95$	$30.01 {\pm} 0.54$	$26.08{\pm}~0.03$	0	$418.07 \pm \ 3.25$
32	0	12.26 ± 0.14	$3.07 {\pm} 0.07$	2.18 ± 0.19	0	48.30 ± 0.80

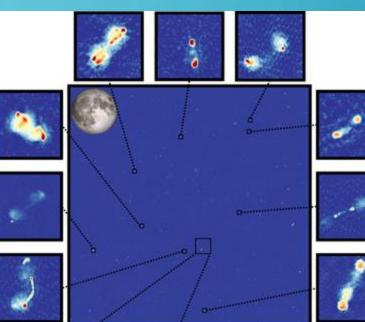
29x		10x		12x		9x	
-----	--	-----	--	-----	--	----	--

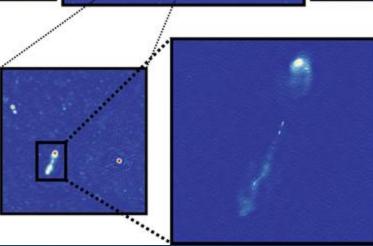
Comparing FULL CPU with FULL GPU

Threads	GPUs	Gridding [sec]	FFT [sec]	w-stack [sec]	Comm. [sec]	Total [sec]
1	0	322.06 ± 2.95	30.01 ± 0.54	26.08 ± 0.03	0	418.07 ± 3.25
32	0	12.26 ± 0.14	3.07 ± 0.07	2.18 ± 0.19	0	48.30 ± 0.80
1	1	$23.29{\pm}~0.02$	$0.70{\pm}0.01$	0.1429 ± 0.0002	0	$68.98 {\pm}~0.61$
1	2	9.51 ± 0.07	$0.86{\pm}0.10$	0.0781 ± 0.0030	$1.80{\pm}0.01$	47.34 ± 1.05
1	4	4.53 ± 0.05	$0.53{\pm}0.01$	0.0403 ± 0.0008	$1.51{\pm}0.22$	23.67 ± 0.44

 \bigcirc

> LOFAR-VLBI USE CASE

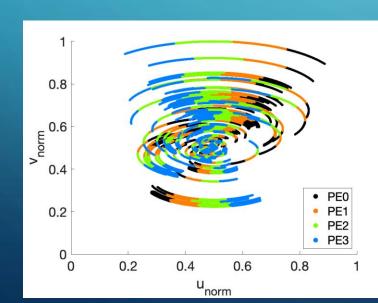

LOFAR-VLBI represent a good benchmark to SKA in terms of data volume, with ~15 TB of endproducts for a single, 8hrs, observation.

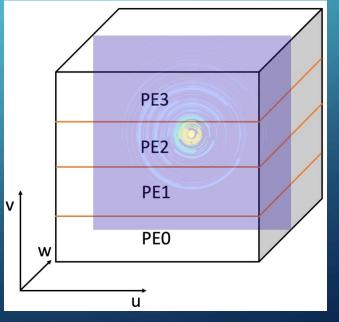

An interesting and challenging task is the imaging of a large FoV (~2.5deg x 2.5deg) with subarcsecond resolution using LOFAR-VLBI.

For our LARGE tests, we have:

Input data ~ 533 GB

Output Image = 65536 x 65536 x 32 pixels ~ 4 TB This is not something a single CPU/GPU can face!


OVERCOMING THE MEMORY WALL



Parallel computing allows to use multiple processors distributing data among their memory:

- Visibilities (and work) are evenly distributed among processing units
- The mesh is split among processing units. The full mesh is never stored in a single memory

→ Problems of "any" size can be supported

Main issue:

visibilities are distributed across memories unrelated to mesh slabs → Lots of communication required

 \bigcirc

LEONARDO@CINECA LARGE TESTS

	Nodes	MPI tasks (threads per task)	GPUs	Gridding (s)	Reduce (s)	FFT (s)	w-correction (s)	Total (s)
CPU tests	32	1024 (1)	0	4.5	9631.4	160.6	7.2	10246.0
	64	2048 (1)	0	1.9	9598.2	107.1	3.5	10153.5
	128	4096 (1)	0	1.1	9715.8	98.4	1.7	10266.5
GPU tests	32	128 (8)	128	2.6	54.8	4.2	0.3	67.4
	64	256 (8)	256	2.4	59.4	2.8	0.2	69.4
	128	512 (8)	512	2.7	72.6	2.7	0.1	83.4

- The right balance of computing power and scaling must be determined to be efficient
- COMMUNICATION BECOMES THE BOTTLENECK
- GPUs help reducing the communication bottleneck

• WORK IN PROGRESS & CONCLUSIONS

- Accurate Evaluation of the Energy impact of RICK
- > Modularization toward library to be used from WSClean
- > Optimization of I/O through parallelism
- > Integration in complex pipelines (Streamflow https://streamflow.di.unito.it/
- HPC can help in strongly reducing the time to solution of radioastronomy data processing of order of magnitudes.
- MPI Parallelism is the only alleviate I/O bottlenecks
- Computing nodes must be algorithmic components. G
 scalability

THANKS FOR YOUR ATTENTION

elp