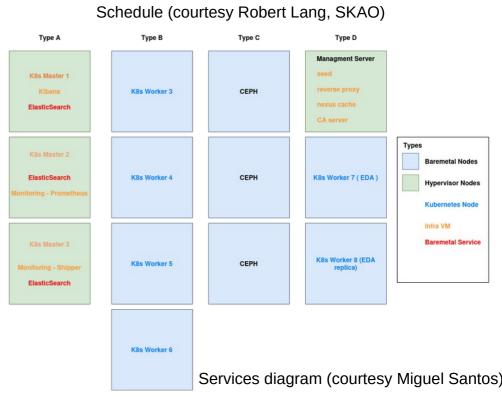
SKAO

Co-design for SKA Project status update

Atelier technique ECLAT


Shan Mignot – Observatoire de la Côte d'Azur

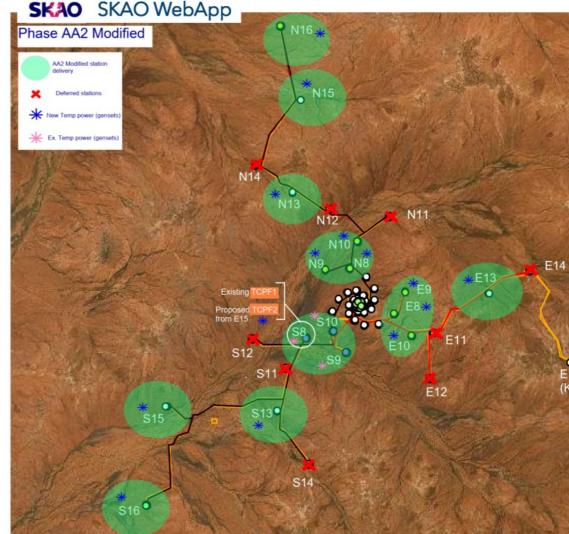
2024-11-28

Construction: AA0.5 (I)

- Early testing of antennas: use of software available in the community
- Antennas
 - Mid: 1st antenna on site, most parts of dishes in South Africa
 - Low: all four stations normally handed over to AIV
- Processing hardware
 - Mid in Karoo array processing building (on site) & Low in Pawsey (in Perth)
 - identical for Mid and Low: 13 HPE ProLiant DL385 Gen10 Plus v2 Servers to form 4 server types (A, B, C, D)

Milestone Event	t (earliest)	SKA-Mid	SKA-Low 2021 Jul	
Construction Appr	oval	2021 Jul		
AA0.5 AIV start	4(3) dishes 4 stations	2025 Jun	2024 Jul	
AA0.5 end	4(3) dishes 4 stations	2025 Dec	2024 Dec	
AA1 end	8 dishes 18 stations	2026 Jul	2025 Nov	
AA2 end	64 dishes 64 stations	2027 Jun	2026 Oct	
AA* end	144 dishes 307 stations	2028 Apr	2028 Jan	
Operations Readin	ess Review	2028 Jul	2028 Apr	
End of Staged Delivery programme		Formal end of construction (including contingency): 2029 Mar		
AA4	197 dishes 512 stations	TBD	TBD	

Construction: AA0.5 (II)


- Servers A, B and D intended for workloads
- Servers C intended for storage
- Kubernetes cluster
- masters: 3 virtual A nodes
- workers
 - 2 virtual A nodes
 - 6 bare metal B and D nodes

	Server Type A	Server Type B	Server Type C	Server Type D	
<u>CPU</u>	64 Cores / 128 T (2 cpus)	64 Cores / 128 T (2 cpus)	64 Cores / 128 T (2 cpus)	64 Cores / 128 T (2 cpus)	
RAM	256 GB (16 x 16 GB)	512 GB (32 x 16 GB)	512 GB (32 x 16 GB)	128 GB (16 x 8 GB)	
<u>SSD</u>	1.92 TB (2 x 0.96 TB)	1.92 TB (2 x 0.96 TB)	1.92 TB (2 x 0.96 TB)	1.92 TB (2 x 0.96 TB)	
	7.68 TB (2 x 3.84 TB)	3.84 TB			
DISK	-	-	200 TB (10 x 20 TB)	1 TB	
Network	10Gb 2-port SFP+ BCM57412 OCP3 Adapter (2 ports) ConnectX-5 100GE 1P <u>NIC</u> (1 port)	10Gb 2-port SFP+ BCM57412 OCP3 Adapter (2 ports) ConnectX-5 100GE 1P <u>NIC</u> (1 port)	10Gb 2-port SFP+ BCM57412 OCP3 Adapter (2 ports) Broadcom P225p NetXtreme-E Dual- port 10Gb/25Gb Ethernet PCIe Adapter - <u>NIC</u> (2 ports)	10Gb 2-port SFP+ BCM57412 OCP3 Adapter (2 ports) ConnectX-5 100GE 1P <u>NIC</u> (1 port)	
	x3	x4	x3	xЗ	
<u>CPU</u>	192 Cores / 384 T	256 Cores / 512 T	192 Cores / 384 T	192 Cores / 384 T	
RAM	768 GB	2048 GB	1536 GB	384 GB	
<u>SSD</u>	5.76 TB	7.68 TB	5.76 TB	5.76 TB	
	23.04 TB	15.36 TB			
DISK	-	-	600 TB (200 TB with ceph mirroring)	3 TB	

Server types fo AA0.5 (courtesy Miguel Santos)

Progress on AA2

- Modification of Low AA2 layout
- Central Processing Facility and Power and Signal distribution will be delivered late
- move some AA2 stations from core to spiral arms to use available resources (Remote Processing Facilities)
- impact on resolution (long baselines) & dynamics (fewer core stations) expected to lead to increased computing
- SDP processing hardware
 - staged delivery to manage risk
 - first delivery expected for November 2025
 - Pawsey has a power limit at 300 kW for AA2

Revised station layout for AA1 (courtesy SKAO)

SEAC: pipeline development review

- Review triggered by Council (~1 year ago)
- Review documentation delivered this summer, meeting in October, final report expected early 2025
- Preliminary report shared by panel is quite critical concerning
 - status of development
 - feasibility risks for AA2 and AA*
 - incompatibility of intended use of the telescopes with the hardware budget
 - insufficient use of existing community solutions

Next steps

- Reorganisation
 - Miles Deegan to focus on SDP and join the DP ART
 - co-design teams to merge: SCOOP (in-kind) and RACOON (contracted)
 - co-design team to work as a regular SAFe team to allow better inclusion in overall effort
- Tension between producing feature-complete software (TBD for MVP) and benchmarking / optimisation effort
 - SCOOP to endorse this effort (TBC)
 - request for SCOOP to work on optimisation
 - ownership issue remains (eg. following the findings and proposal made by Clément Devatine during his internship at Eviden)
 - continue working with teams SCHAAP & PANDO who have a longer history of working with core developers of DP3 and WSClean

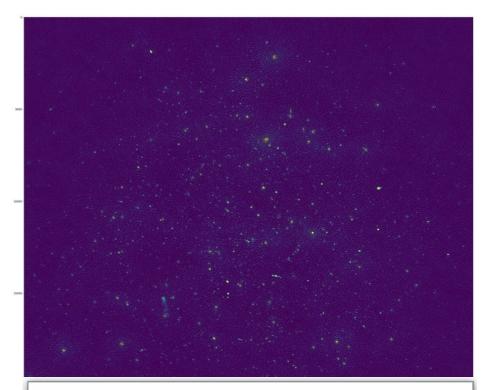
Low Goal 5

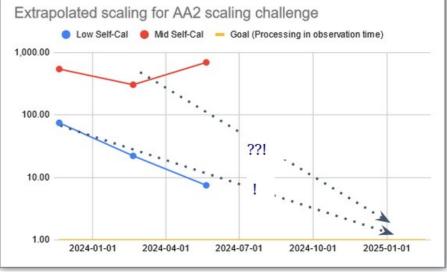
- Deliver an MVP for end-to-end processing for continuum imaging by the end of PI25 (March 2025)
 - intended in a realistic SDP context (monitoring and control) but first planned as manual (Slurm script)
- Test platform from AWS and benchmarking intended to inform November 2025 hardware order
 - head node: single t3a.xlarge instance
 - different queues to use different hardware (bare metal) and scale
 - 2.4 TB Lustre high performance storage at 480 MBs/s
 - 2 S3 bucket for input/output data

Queue	Instance Type	vCPUs	RAM	Network Performance	Queue Max Intances	Hourly Cost (On Demand)	Hourly Cost (Spot)
c7i-metal-24xl-ondemand / spot	c7i-metal-24xl	96	192 GB	37.5 Gbit	б	\$5.09	\$1.43
c7i-metal-48xl-ondemand / spot	c7i-metal-48xl	192	384 GB	50 Gbit	3	\$10.18	\$2.82
r7i-metal-24xl-ondemand / spot	r7i-metal-24xl	96	768 GB	37.5 Gbit	б	\$7.46	\$2.01
r7i-metal-48xl-ondemand / spot	r7i-metal-48xl	192	1536 GB	50 Gbit	3	\$14.92	\$4.02

AWS queues (courtesy Bojan Nikolic)

Development strategy


- DP3 and WSClean as building blocks for AA2
 - meet schedule constraint
 - build on existing software
- DP ART uncertain on whether is can scale further
 - AA* is 2 years later with numbers of visibilities increased by ~5 (Mid) and ~23 (Low)
 - AA4 and subsequent extensions are still larger
- Develop intrinsically distributable pipelines
 - MSv4 & xradio (based on xarray) to replace MSv2
 - Imaging swiFTly scheme: distributed Fourier transforms and w-towers (Wortmann et al, 2024)

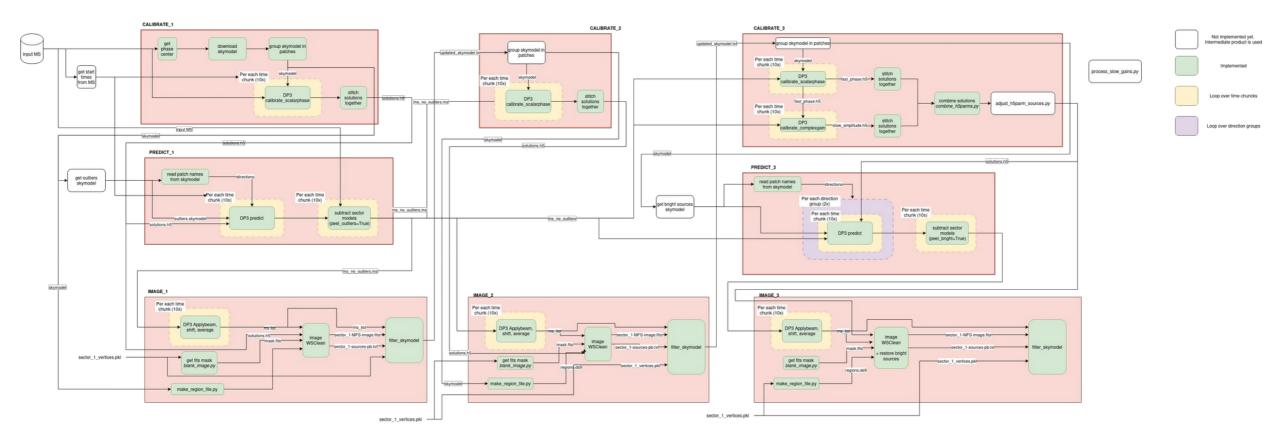

Status of pipelines for AA2

- Test with simulated data based on AA1 configuration (as will be available by November 2025)
- flux calibration MS, polarisation MS (x4), bandpass, delay, complex gain MS, target observation MS
- Pipelines
 - instrumental calibration: delay, bandpass, complex gain, polarisation leakage, polarisation angle, density
 - pre-processing: flagging, a priori calibration, averaging (frequency, time)
 - self-calibration and continuum imaging pipeline
- Risks
 - integration
 - performance

ICAL pipeline

- ICAL: self-calibration pipeline still under development
- derived from Rapthor
- runs 9 cycles (7 originally in Rapthor)
- DP3 for calibrate and predict
- WSClean for imaging
- parallelisation on time and frequency by running separate instances of DP3 and WSClean via Dask workers
- Tested on calibration field (LOFAR observation)
- Recent benchmarking and optimisation
 - still ~7x behind the objective of processing data as fast as it is acquired

Performance improvement (courtesy Peter Wortmann)


Rapthor pipeline (I)

- Cycle 1
 - Calibrate_1: based on the phase center of the MS, the skymodel is downloaded and grouped in patches Those are used for a phase-only calibration.
 - Predict_1: the sources which lie outside the field we want to image are predicted and subtracted in the visibility space. This produces the Ms: ms_no_outliers, which is further used throughout the pipeline.
 - Image_1: The dataset is imaged and the solutions in calibrate_1 are applied while imaging.
- Cycle 2
 - Calibrate_2: using the new skymodel produced by image_1, run a phase_only calibration.
 - Image_2: Same as image_1, whith updated solutions.

Rapthor pipeline (II)

- Cycles 3, 4, 5, 6:
 - Calibrate_*: using the new skymodel produced by image_2, run two DDECal: scalarphase and complexgain. The solutions are then combined.
 - Predict_*: extract the bright sources from the skymodel and predict them. Those are subtracted from the MS in the visibility space. This creates the MS: ms_no_outliers_no_bright_sources, wh is further used for imaging.
 - Image_*: the dataset is imaged. Afterwards, the bright sources are put back in the image and in the output skymodel.
- Cycles 1-6 run on 20% of data and 7th on 100%

Rapthor pipeline (III)

Schematic view of the first 3 cycles of Rapthor (courtesy Chiara Salvoni)

ECLAT contributions to the SDP challenge

- SKAO not really looking at alternative community software
 - study DDF-pipeline and establish a fair basis for comparison for risk management
- Longer term proposal for SKAO's scalable pipelines
- baseline partitioning for parallelisation (Sunrise)
- NumPEx tools (Exa-DoST, Exa-AToW)
- Sustainable computing (also applicable to SRC-FR (with additional constraint of distributed storage and computing)
 - power consumption and environmental impact internships @ Avalon/Lagrange
 - optimise constrained execution
 - compile-time mapping and scheduling: PREESM and sim-sdp @ Dark Era
 - multi-node mapping, scheduling and resource management @ Exa-AToW

SRCNet and SRC-FR

• update from Chiara Ferrari

We recognise and acknowledge the Indigenous peoples and cultures that have traditionally lived on the lands on which our facilities are located. ۲

• • • •

٠

•

 \bullet